
CSE 351 Section 5 – Arrays and Buffer Overflow 
Welcome back to section, we’re happy that you’re here  

Arrays 

 Arrays are contiguously allocated chunks of memory large enough to hold the specified number of 
elements of the size of the datatype.  Separate array allocations are not guaranteed to be contiguous. 

 2-dimensional arrays are allocated in row-major ordering in C (i.e. the first row is contiguous at the start of 
the array, followed by the second row, etc.).   

 2-level arrays are formed by creating an array of pointers to other arrays (i.e. the second level). 
 
We have a two-dimensional matrix of integer data of size 𝑀 rows and 𝑁 columns.  We are considering 3 different 
representation schemes: 

1) 2-dimensional array  int array2D[][],   // M*N array of ints  

2) 2-level array  int* array2L[], and    // M array of int arrays 
3) array of linked lists  struct node* arrayLL[].  // M array of linked lists (struct node) 

Consider the case where 𝑀 = 3 and 𝑁 = 4.  The declarations are given below: 

2-dimensional array: 2-level array: Array of linked lists: 
int array2D[3][4]; int r0[4], r1[4], r2[4]; 

int* array2L[] = {r0,r1,r2}; 
struct node { 
 int col, num; 
 struct node* next; 
}; 
struct node* arrayLL[3]; 
// code to build out LLs 

For example, the diagrams below correspond to the matrix   ൥
0 0

−4 0
0 0

1 0
5 0
0 0

൩   for array2L and arrayLL: 

 

a) Fill in the following comparison chart: 

 2-dim array 2-level array Array of LLs: 

Overall Memory Used    

Largest guaranteed 
continuous chunk of 
memory 

   

Smallest guaranteed 
continuous chunk of 
memory 

   

Data type returned by: array2D[1] 
 

array2L[1] 
 

arrayLL[1] 
 

Number of memory accesses 
to get int in the BEST case 

   

Number of memory accesses 
to get int in the WORST 
case 

   



 
b) Sam Student claims that since our arrays are relatively small (𝑁 < 256), we can save space by storing the col 

field as a char in struct node.  Is this correct?  If so, how much space do we save?  If not, is this an example 

of internal or external fragmentation?  

 

 

 

 

 

 

 

c) Provide a scenario where a 2-dimensional array would be more useful and another where a 2-level array 

would be more useful. 

 

 

 

 

 

d) Sam wants to create a 2-D matrix of the countries of the world that can be accessed alphabetically. Which 

implementation should Sam choose to represent this information? Describe what this implementation would 

look like. 

 

൦

𝐴𝑓𝑔ℎ𝑎𝑛𝑖𝑠𝑡𝑎𝑛 𝐴𝑙𝑏𝑎𝑛𝑖𝑎 . . . 𝐴𝑧𝑒𝑟𝑏𝑎𝑖𝑗𝑎𝑛
𝐵𝑎ℎ𝑎𝑚𝑎𝑠 . . . 𝐵𝑢𝑟𝑢𝑛𝑑𝑖  − − −

⋮ ⋮ ⋮ ⋮
𝑍𝑎𝑚𝑏𝑖𝑎 𝑍𝑖𝑚𝑏𝑎𝑏𝑤𝑒  − − −  − − −

൪ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Buffer Overflow 
Consider the following C program: 

 
void main() { 
  read_input(); 
} 
 
int read_input() { 
  char buf[8]; 
  gets(buf); 
  return 0; 
} 

Here is a diagram of the stack in read_input()right before the call to gets(): 

a) What is the value of the return address stored on the stack? 

 
 

Assume that the user inputs the string “jklmnopqrs” 

 

b) Write the values in the stack before the “return 0;” statement is executed. Cross 

out the values that were overwritten and write in their new values. 

(Hint: use the ASCII table at the bottom to convert from letters to bytes) 

 

c) What is the new return address after the call to gets()?  

 

 

d) Where will execution jump to after the “return 0;”? 

 

 

e) How many characters would we have to enter into the command line to overwrite the 

return address to 0x6A6B6C6D6E6F? 

 

 

f) Create a string that will overwrite the return address, setting it to 0x6A6B6C6D6E6F 

 

 

In Lab 3, we are given a tool called sendstring, which converts hex digits into the actual bytes 

 

 >echo “61 62 63” | ./sendstring 
 abc 

 

g) If we want to overwrite the return address to a stack address like 0x7FFFFFAB1234, we 

need to use a tool like sendstring to send the correct bytes.  

Why can’t we just manually type the characters like we did earlier with “jklmnopqrs”? 

 

 

 

 

Address Value (hex) 

%rsp+15 00 

%rsp+14 00 

%rsp+13 00 

%rsp+12 00 

%rsp+11 00 

%rsp+10 40 

%rsp+9 AF 

%rsp+8 3B 

%rsp+7  

%rsp+6  

%rsp+5  

%rsp+4  

%rsp+3  

%rsp+2  

%rsp+1  

%rsp+0  

Check out the Lab 3 video on 

Phase 0 before you start the lab!  

It’s linked on the Lab 3 page 


