CSE 351 Section 4 - x86-64 Assembly

Hi there! Welcome back to section, we're happy that you're here ©

Control Flow and Condition Codes

Internally, condition codes (Carry, Zero, Sign, Overflow) are set based on the result of the previous operation. The
j* and set* families of instructions use the values of these “flags” to determine their effects. See the table
provided on your reference sheet for equivalent conditionals.

An indirect jump is specified by adding an asterisk (*) in front of a memory operand and causes your program
counter to load the address stored at the computed address. (e.g. jmp *%rax) This is useful for switch case
statements

Procedure Basics
The instructions push, pop, call, and ret move the stack pointer (%$rsp) automatically.

$rax is used for the return value and the first six arguments go in $rdi, $rsi, $rdx, $rcx, $r8, $r9
(“Diane’s Silk Dress Cost $89”).

Exercises:

1. [CSE351 Aul5 Midterm] Convert the following C function into x86-64 assembly code. You are not being
judged on the efficiency of your code - just the correctness.

long happy(long *x, long vy, long z) ({
if (y > z)
return z + y;
else
return *x;

}

happy:
cmpg %rdx, %rsi
jle .else
leag (%rdx, S%rsi), %rax
ret
.else:
movq (%rdi), %rax
ret

Multiple other possibilities (eg. switch ordering of if/else clauses, replace 1ea with mov/add instruction
pair).

2. Write an equivalent C function for the following x86-64 code:

mystery:

1 testl $edx, %edx
2 js .L3

3 cmpl %$esi, %$edx
4 jge .L3

5 movslg %$edx, %rdx
6 movl (%rdi, $rdx,4), %eax
7 ret

.L3:

8 movl S0, %eax

9 ret

int mystery(int *x, int y, int z)
if (z >= 0 && z < y)
return x[z];
else
return O;

Notes:

R

{

%edx 1s 3¢ argument (z)

Jjump to .L3 if z<0

%esi 1is 2" argument (y)

Jjump to .L3 if y<=z

sign-extend 3¢ argument (z)

$rdi is 1t argument (x), calc *(x + z*4)

return O

e Ifeither conditional is True, then we jump to the “else” clause, so in C we execute the “if” clause only
when the complement of both of them are True.
e Line 6 indicates that the return type is 4 bytes (int). Line 8 is ambiguous since it zeros out the

entire 8 bytes of $rax.

e Argument variable names are arbitrary. Based on usage, could perhaps have used x—arzr, y—n,

z—k.

e First argument had to point to int based on scale factor in Line 6. Both int *xand int x[]

work.

3. [CSE351 Wil7 Midterm] Consider the following x86-64, (partially blank) C code, and memory diagram.
Addresses and values are 64-bit. Fill in the C code based on the given assembly.

foo: int foo(long* p) {
movl $0, Seax
int result = 0;
Ll: while (p != NULL) {
testq %rdi, Srdi
je 1.2 p = *(long**)p;
movq (srdi), %rdi result = result + 1;
addl $1, Seax
Jjmp L1 }
return result;
L2:
ret }

Part 2: Follow the execution of foo in assembly, where 0x1000 is passed in to $rdi
Write the values of $rdi and $eax in the columns. If the value doesn’t change, you can leave it blank

Instruction

%rdi (hex)

%eax (decimal)

movl

0x1000

0

testqg

Jje

movq

0x1030

addl

jmp

testqg

Jje

movq

0x0

addl

Jjmp

testqg

Jje

ret

Address Value

0x1000 | 0x1030
0x1008 | 0x1020
0x1010 | 0x1000
0x1018 | 0x0000
0x1020 | 0x1030
0x1028 | 0x1008
0x1030 | 0x0000
0x1038 | 0x1038
0x1040 |0x1048
0x1048 | 0x1040

