
CSE 351 Section 4 – x86-64 Assembly
Hi there! Welcome back to section, we’re happy that you’re here ☺

Control Flow and Condition Codes

Internally, condition codes (Carry, Zero, Sign, Overflow) are set based on the result of the previous operation. The
j* and set* families of instructions use the values of these “flags” to determine their effects. See the table

provided on your reference sheet for equivalent conditionals.

An indirect jump is specified by adding an asterisk (*) in front of a memory operand and causes your program
counter to load the address stored at the computed address. (e.g. jmp *%rax) This is useful for switch case
statements

Procedure Basics

The instructions push, pop, call, and ret move the stack pointer (%rsp) automatically.

%rax is used for the return value and the first six arguments go in %rdi, %rsi, %rdx, %rcx, %r8, %r9

 (“Diane’s Silk Dress Cost $89”).

Exercises:

1. [CSE351 Au15 Midterm] Convert the following C function into x86-64 assembly code. You are not being
judged on the efficiency of your code – just the correctness.

long happy(long *x, long y, long z) {

 if (y > z)

 return z + y;

 else

 return *x;

}

2. Write an equivalent C function for the following x86-64 code:

mystery:

 testl %edx, %edx

 js .L3

 cmpl %esi, %edx

 jge .L3

 movslq %edx, %rdx

 movl (%rdi,%rdx,4), %eax

 ret

.L3:

 movl $0, %eax

 ret

3. [CSE351 Wi17 Midterm] Consider the following x86-64, (partially blank) C code, and memory diagram.
Addresses and values are 64-bit. Fill in the C code based on the given assembly.

Part 2: Follow the execution of foo in assembly, where 0x1000 is passed in to %rdi
Write the values of %rdi and %eax in the columns. If the value doesn’t change, you can leave it blank

Instruction %rdi (hex) %eax (decimal)

movl 0x1000 0

testq

je Address Value

 0x1000 0x1030

 0x1008 0x1020

 0x1010 0x1000

 0x1018 0x0000

 0x1020 0x1030

 0x1028 0x1008

 0x1030 0x0000

 0x1038 0x1038

 0x1040 0x1048

 0x1048 0x1040

int foo(long* p) {

 int result = ____;

 while (________) {

 p = ___________;

 _____ = __________;

 }

 return result;

}

foo:

 movl $0, %eax

L1:

 testq %rdi, %rdi

 je L2

 movq (%rdi), %rdi

 addl $1, %eax

 jmp L1

L2:

 ret

