
CSE 351
Section 3

Download the Section Handout!

https://courses.cs.washington.edu/courses/cse351/20su/sections/0

3/cse351_sec3.pdf

Solutions will be posted this evening.

https://courses.cs.washington.edu/courses/cse351/20su/sections/03/cse351_sec3.pdf

Floating Point

Floating Point Notation

Scientific Notation in Binary

Ex: 2.7510 = 10.112=(+)1.0112 x 21

sign exponent mantissa

Floating Point Representation

Sign, Exponent, Mantissa are fields at the bit level

Ex: (+)1.0112 x 21

Exponent and the E - Field

Stored with a bias of 2w-1-1 (w is the bit width of E)

Ex: (+)1.0112 x 21

Bias = 28-1-1 = 127

E = Exp + Bias = 1 + 127 = 128 or 0b1000 0000

Stored at the bit level in the E field

Mantissa and the M - Field

Implicit Leading 1 in the M Field

Ex: (+)1.0112 x 21

Mantissa = 1.011

M Field = 0b 01100 … 0

This 1 is implicit for extra precision!

Stored at the bit level in the M field

Putting it Together

Implicit Leading 1 in the M Field

Ex: (+)1.0112 x 21

S = 0 E = 0b 1000 0000 M = 0b 01100 … 0

0 1000 0000 01100000000000000000000

Practice!!! Exercises 1 and 2

E (5 bits) = 2^(5-1) - 1 = 15

1 0 0 0 0

0 1 1 1 1

0 1 1 1 0

1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 0

Practice!!! Exercise 6
Convert 3145728.12510 into single precision floating point representation

1. Convert to binary scientific notation

2. Get S, E, and M Fields

0 1001010
0

10000000000000000000000

3145728.12510 = 221+220+2-3 = 1.1000000000000000000000012 x 221

a. Positive number, so S = 0

b. Exp = 21, so E = 21 + 127 = 148 = 0b 1001 0100
c. Mant = 1.1000000000000000000000012 so M = 0b 100…..0

Floating Point Gotchas

A. Only 23 bits of mantissa, so 2 + 2^50 = 250 (2 gets rounded
off). So LHS = 0, RHS = 2.

B. 0.1 and 0.2 have infinite representations in binary point, so the
LHS and RHS suffer from different amounts of rounding.

C. 1 is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 is
23 powers of 2 away from 225, so it doesn’t get rounded off.

x86-64 Assembly

x86-64 Assembly
Assembly language is a human-readable representation of machine code

instructions (generally a one-to-one correspondence). Assembly is machine-specific

because the computer architecture and hardware are designed to execute a

particular machine code instruction set.

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern

personal computers. It was developed by Intel and AMD and its 32-bit predecessor

is called IA32. x86-64 is designed for complex instruction set computing (CISC),

generally meaning it contains a larger set of more versatile and more complex

instructions.

Data and Instructions
For this course, we will utilize only a small subset of x86-64’s instruction set and omit

floating point instructions. The subset of x86-64 instructions that we will use in this

course take either one or two operands, usually in the form:

instruction operand1, operand2

There are three options for operands:

- Immediates: constants (e.g. $0x400)

- Registers: fast memory accessible to the CPU (e.g. %rax, %edx)

- Memory: memory addresses computed with D(Rb, Ri, S)
- such as 0x400(%rdi, %rsi, 4) = (%rdi + 4 * %rsi) + 0x400

Operand Size
The operation determines the effect of the operands on the processor state and has

a suffix (“b” for byte, “w” for word, “l” for long, “q” for quad word) that determines the

bit width of the operation. Sometimes the operation size can be inferred from the

operands, so the suffix is omitted for brevity. For example:

● movb src, dst - copies 1 byte from src to dst

● movw src, dst - copies 2 bytes from src to dst

● movl src, dst - copies 4 bytes from src to dst

● movq src, dst - copies 8 bytes from src to dst

Interpreting Instructions
What do the following assembly instructions do?

X86-64 instruction English equivalent

movq $351, %rax Move the number 351 into 8-byte (quad) register “rax”

addq %rdi, %rsi Add the 64-bit value of %rdi to %rsi

movq (%rdi), %r8 Move the 64-bit data at the address stored in %rdi to %r8

leaq (%rax,%rax,8), %rax Compute 9 * %rax, and store the 64-bit result in %rax

Exercise 1
Symbolically, what does the following code return? Remember, register %rax is used

to store the return value.

movl (%rdi), %eax # %rdi -> x

leal (%eax,%eax,2), %eax # %rax -> r

addl %eax, %eax

andl %esi, %eax # %rsi -> y

subl %esi, %eax

ret

*x

*x * 3

(*x * 3) * 2

(*x * 6) & y

((*x * 6) & y) - y

The GNU Debugger (GDB)
The GNU Debugger is a powerful debugging tool that will be critical to Lab 2

(releasing tomorrow!) and Lab 3 and is a useful tool to know as a programmer

moving forward.

There are tutorials and reference sheets available on the course webpage, but we’ll

be doing a short demo of the basics in class (you can find the handout to follow

along on the course website).

We’ve also provided an (optional, but highly recommended) guided tutorial on

Gradescope which even walks you through the first “phase” of Lab 2!

