CSE 351 Section 2 – Pointers and Bit Operators

Pointers

A pointer is a variable that holds an address. C uses pointers explicitly. If we have a variable \(x \), then \&\(x \) gives the address of \(x \) rather than the value of \(x \). If we have a pointer \(p \), then *\(p \) gives us the value that \(p \) points to, rather than the value of \(p \).

Consider the following declarations and assignments:

```c
int x;
int *ptr;
ptr = &x;
```

1) We can represent the result of these three lines of code visually as shown.

The variable \(ptr \) stores the address of \(x \), and we say “\(ptr \) points to \(x \).”\(x \) currently doesn’t contain a value since we did not assign \(x \) a value!

2) After executing \(x = 5; \), the memory diagram changes as shown.

3) After executing \(*ptr = 200; \), the memory diagram changes as shown.

We modified the value of \(x \) by dereferencing \(ptr \).

Pointer Arithmetic

In C, arithmetic on pointers (++, +, -, -) is scaled by the size of the data type the pointer points to. That is, if \(p \) is declared with pointer \(\text{type}* p \), then \(p + i \) will change the value of \(p \) (an address) by \(i\text{sizeof(type)} \) (in bytes). If there is a line \(*p = *p + 1 \), regular arithmetic will apply unless \(*p \) is also a pointer datatype.

Exercise:

Draw out the memory diagram after sequential execution of each of the lines below:

```c
int main(int argc, char **argv) {
    int x = 410, y = 350;   // assume &x = 0x10, &y = 0x14
    int *p = &x;            // p is a pointer to an integer
    *p = y;
    p = p + 4;
    p = &y;
    x = *p + 1;
}
```
C Bitwise Operators

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
<th>← AND (&) outputs a 1 only when both input bits are 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>OR (|) outputs a 1 when either input bit is 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
<th>← XOR (^) outputs a 1 when either input is exclusively 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>NOT (~) outputs the opposite of its input.</td>
</tr>
</tbody>
</table>

Masking is very commonly used with bitwise operations. A mask is a binary constant used to manipulate another bit string in a specific manner, such as setting specific bits to 1 or 0.

Exercises:

1) What happens when we fix/set one of the inputs to the 2-input gates? Let \(x \) be the other input.
 Fill in the following blanks with either 0, 1, \(x \), or \(\overline{x} \) (NOT \(x \)):
 \[
 x \& 0 = _0_0_ \\
 x | 0 = _x_x_ \\
 x \& 1 = _x_x_ \\
 x | 1 = _1_1_ \\
 x ^ 0 = _x_x_ \\
 x ^ 1 = _\overline{x}_\overline{x}_ \\
 \]

2) Bit Manipulation/Number Representation exercises:

 Bit Extraction: Returns the value (0 or 1) of the 19th bit (counting from LSB). Allowed operators: \(\gg, \&, |, \sim \).

   ```
   int extract19(int x) {
       return (x >> 18) & 0x1;
   }
   ```

 Subtraction: Returns the value of \(x - y \). Allowed operators: \(\gg, \&, |, \sim, + \).

   ```
   int subtract(int x, int y) {
       return x + ((~y) + 1);
   }
   ```

 Equality: Returns the value of \(x == y \). Allowed operators: \(\gg, \&, |, \sim, +, ^, ! \).

   ```
   int equals(int x, int y) {
       return !(x ^ y);
   }
   ```

 Divisible by Eight? Returns the value of \((x \% 8) == 0 \). Allowed operators: \(\gg, \ll, \&, |, \sim, +, ^, ! \).

   ```
   int divisible_by_8(int x) {
       return !(x << 29);
   }
   ```

 Greater than Zero? Returns the value of \(x > 0 \). Allowed operators: \(\gg, \&, |, \sim, +, ^, ! \).

   ```
   int greater_than_0(int x) {
       /* invert and check sign; we need the third operand for the T_min case */
       return ((~x + 1) >> 31) & 0x1 & ~(x >> 31) \_OR\_ !x & ~(x >> 31);
   }
   ```
3) Implement the following C function using control structures and bitwise operators.

```c
int num_pairs_opposite(int x) {
    int count = 0;
    for (int i = 0; i < 16; i++) {  // 32 bits in an integer
        int bit0 = x & 1;
        int bit1 = (x >> 1) & 1;
        count += bit0 ^ bit1;
        x >>= 2;
    }
    return count;
}
```

Signed Integers with Two’s Complement

Two’s complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative (additive inverse) of a two’s complement number can be found by: flipping all the bits and adding 1 (i.e. \(-x = \overline{x} + 1\)).

The “number wheel” showing the relationship between 4-bit numerals and their Two’s Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer + 1?

<table>
<thead>
<tr>
<th>Unsigned</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111 1111</td>
<td>0111 1111</td>
</tr>
<tr>
<td>1111 1111</td>
<td>0000 0000</td>
</tr>
</tbody>
</table>

2) How do you represent (if possible) the following numbers: 39, -39, 127?
<table>
<thead>
<tr>
<th>Unsigned:</th>
<th>Two's Complement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>39: 0010 0111</td>
<td>39: 0010 0111</td>
</tr>
<tr>
<td>127: 0111 1111</td>
<td>127: 0111 1111</td>
</tr>
</tbody>
</table>

3) Compute the following sums in binary using your Two’s Complement answers from above. *Answer in hex.*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>39 -> 0b 0 0 1 0 0 1 1 1</td>
<td>b.</td>
</tr>
<tr>
<td></td>
<td>+ (-39) -> 0b 1 1 0 1 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x 0 0 <- 0b 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c.</td>
<td>39 -> 0b 0 0 1 0 0 1 1 1</td>
<td>d.</td>
</tr>
<tr>
<td></td>
<td>+ (-127) -> 0b 1 0 0 0 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x A 8 <- 0b 1 0 1 0 1 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

4) Interpret your answers from 2 & 3 and indicate if overflow has occurred for each of the representations. (For values that cannot be represented, interpret as Two’s Complement, then convert to unsigned.)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>39 + (-39)</td>
<td>b.</td>
</tr>
<tr>
<td></td>
<td>Unsigned: 0 overflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two's Complement: 0 no overflow</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>39 + (-127)</td>
<td>d.</td>
</tr>
<tr>
<td></td>
<td>Unsigned: 168 no overflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two's Complement: -88 no overflow</td>
<td></td>
</tr>
</tbody>
</table>