
CSE351, Summer 2020L26: Course Wrap-Up

Java and C (part II) + Course Wrap-Up
CSE 351 Summer 2020

Instructor: Teaching Assistants:

Porter Jones Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

https://xkcd.com/1760/

https://xkcd.com/1760/

CSE351, Summer 2020L26: Course Wrap-Up

Administrivia

❖ Questions doc: https://tinyurl.com/CSE351-8-21

❖ Can still do hw19 (it’s optional/not for credit)

❖ hw23 due Monday (8/24) – 10:30am

▪ Cover most of the material today, a few more things Friday

❖ Lab 5 and Unit Summary 3 due tonight!(Friday 8/21)

▪ Cutoff is tomorrow, Saturday 8/22 @11:59pm (only one late
day can be used!)

2

https://tinyurl.com/CSE351-8-21

CSE351, Summer 2020L26: Course Wrap-Up

Course Evaluation Reminder Meme

❖ Reminder to please fill out your course evaluations!! (you should
have received a couple emails with a link to the eval)

3

CSE351, Summer 2020L26: Course Wrap-Up

Virtual Machine Model

4

High-Level Language Program
(e.g. Java, C)

Virtual Machine Language
(e.g. Java bytecodes)

Native Machine Language

(e.g. x86, ARM, MIPS)

Bytecode compiler
(e.g. javac Foo.java)

Virtual machine (interpreter)
(e.g. java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time

CSE351, Summer 2020L26: Course Wrap-Up

Java Bytecode

❖ Like assembly code for JVM,
but works on all JVMs
▪ Hardware-independent!

❖ Typed (unlike x86 assembly)

❖ Strong JVM protections

5

0 1 2 3 4 n

variable table

operand stack

constant
pool

Holds pointer this

Other arguments to method

Other local variables

CSE351, Summer 2020L26: Course Wrap-Up

JVM Operand Stack

6

iload 1 // push 1st argument from table onto stack

iload 2 // push 2nd argument from table onto stack

iadd // pop top 2 elements from stack, add together, and

// push result back onto stack

istore 3 // pop result and put it into third slot in table

mov 8(%ebp), %eax

mov 12(%ebp), %edx

add %edx, %eax

mov %eax, -8(%ebp)

Compiled
to (IA32) x86:

Bytecode:

0 1 2 3 4 n

constant
pool

variable table
operand stack

JVM:

Holds pointer this

Other arguments to method
Other local variables

‘i’ = integer,
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, ...

No registers or stack locations!
All operations use operand stack

CSE351, Summer 2020L26: Course Wrap-Up

A Simple Java Method

7

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name>

// getfield instruction has a 3-byte encoding

// Pop an element from top of stack, retrieve its

// specified instance field and push it onto stack

// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

2A B4 00 05 B0As stored in the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listing

s

0

aload_0 getfield 00 05 areturn

1 4Byte number:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Summer 2020L26: Course Wrap-Up

Class File Format

❖ Every class in Java source code is compiled to its own class file

❖ 10 sections in the Java class file structure:
▪ Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)

▪ Version of class file format: The minor and major versions of the class file

▪ Constant pool: Set of constant values for the class

▪ Access flags: For example whether the class is abstract, static, final, etc.

▪ This class: The name of the current class

▪ Super class: The name of the super class

▪ Interfaces: Any interfaces in the class

▪ Fields: Any fields in the class

▪ Methods: Any methods in the class

▪ Attributes: Any attributes of the class (for example, name of source file, etc.)

❖ A .jar file collects together all of the class files needed for
the program, plus any additional resources (e.g. images)

8

CSE351, Summer 2020L26: Course Wrap-Up

Disassembled
Java Bytecode

9

Compiled from Employee.java

class Employee extends java.lang.Object {

public Employee(java.lang.String,int);

public java.lang.String getEmployeeName();

public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)

0 aload_0

1 invokespecial #3 <Method java.lang.Object()>

4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

14 aload_0

15 aload_1

16 iload_2

17 invokespecial #6 <Method void

storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>

4 areturn

Method int getEmployeeNumber()

0 aload_0

1 getfield #4 <Field int idNumber>

4 ireturn

Method void storeData(java.lang.String, int)

…

> javac Employee.java

> javap -c Employee

http://en.wikipedia.org/wiki/Jav

a_bytecode_instruction_listings

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Summer 2020L26: Course Wrap-Up

Other languages for JVMs

❖ JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
▪ AspectJ, an aspect-oriented extension of Java

▪ ColdFusion, a scripting language compiled to Java

▪ Clojure, a functional Lisp dialect

▪ Groovy, a scripting language

▪ JavaFX Script, a scripting language for web apps

▪ JRuby, an implementation of Ruby

▪ Jython, an implementation of Python

▪ Rhino, an implementation of JavaScript

▪ Scala, an object-oriented and functional programming language

▪ And many others, even including C!

❖ Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC’ed platform

10

CSE351, Summer 2020L26: Course Wrap-Up

Microsoft’s C# and .NET Framework

❖ C# has similar motivations as Java
▪ Virtual machine is called the

Common Language Runtime

▪ Common Intermediate Language
is the bytecode for C# and other
languages in the .NET framework

11

CSE351, Summer 2020L26: Course Wrap-Up

We made it! ☺

12

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2020L26: Course Wrap-Up

Today

❖ End-to-end Review

▪ What happens after you write your source code?
• How code becomes a program

• How your computer executes your code

❖ Victory lap and high-level concepts (key points)

▪ More useful for “5 years from now” than “next week’s final”

13

CSE351, Summer 2020L26: Course Wrap-Up

C: The Low-Level High-Level Language

❖ C is a “hands-off” language that “exposes” more of
hardware (especially memory)

▪ Weakly-typed language that stresses data as bits
• Anything can be represented with a number!

▪ Unconstrained pointers can hold address of anything
• And no bounds checking – buffer overflow possible!

▪ Efficient by leaving everything up to the programmer

▪ “C is good for two things: being beautiful and creating
catastrophic 0days in memory management.”
(https://medium.com/message/everything-is-broken-81e5f33a24e1)

https://medium.com/message/everything-is-broken-81e5f33a24e1

CSE351, Summer 2020L26: Course Wrap-Up

C Data Types

❖ C Primitive types

▪ Fixed sizes and alignments

▪ Characters (char), Integers (short, int, long),
Floating Point (float, double)

❖ C Data Structures

▪ Arrays – contiguous chunks of memory
• Multidimensional arrays = still one continuous chunk, but row-major

• Multi-level arrays = array of pointers to other arrays

▪ Structs – structured group of variables
• Struct fields are ordered according to declaration order

• Internal fragmentation: space between members to satisfy member
alignment requirements (aligned for each primitive element)

• External fragmentation: space after last member to satisfy overall struct
alignment requirement (largest primitive member)

CSE351, Summer 2020L26: Course Wrap-Up

C and Memory

❖ Using C allowed us to examine how we store and
access data in memory

▪ Endianness (only applies to memory)
• Is the first byte (lowest address) the least significant (little endian) or

most significant (big endian) of your data?

▪ Array indices and struct fields result in calculating proper
addresses to access

❖ Consequences of your code:

▪ Affects performance (locality)

▪ Affects security

❖ But to understand these effects better, we had to
dive deeper…

CSE351, Summer 2020L26: Course Wrap-Up

How Code Becomes a Program

17

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C source code

Assembly files

Object files

Executable program

Static libraries

Loader (the OS)

Hardware

CSE351, Summer 2020L26: Course Wrap-Up

C Language

Instruction Set Architecture

18

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

CISC

RISC

CSE351, Summer 2020L26: Course Wrap-Up

CPU

Assembly Programmer’s View

❖ Programmer-visible state
▪ PC: the Program Counter (%rip in x86-64)

• Address of next instruction

▪ Named registers

• Together in “register file”

• Heavily used program data

▪ Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching 19

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

❖ Memory
▪ Byte-addressable array

▪ Huge virtual address
space

▪ Private, all to yourself…

CSE351, Summer 2020L26: Course Wrap-Up

CPU

Program’s View

20

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Summer 2020L26: Course Wrap-Up

Program’s View

❖ Instructions
▪ Data movement

• mov, movz, movz

• push, pop

▪ Arithmetic
• add, sub, imul

▪ Control flow
• cmp, test

• jmp, je, jgt, ...

• call, ret

❖ Operand types
▪ Literal: $8

▪ Register: %rdi, %al

▪ Memory: D(Rb,Ri,S) = D+Rb+Ri*S

• lea: not a memory access!

21

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Summer 2020L26: Course Wrap-Up

Program’s View

❖ Procedures
▪ Essential abstraction

▪ Recursion…

❖ Stack discipline
▪ Stack frame per call

▪ Local variables

❖ Calling convention
▪ How to pass arguments

• Diane’s Silk Dress Costs $89

▪ How to return data

▪ Return address

▪ Caller-saved / callee-saved registers

22

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Summer 2020L26: Course Wrap-Up

Program’s View

❖ Heap data
▪ Variable size

▪ Variable lifetime

❖ Allocator
▪ Balance throughput and memory

utilization

▪ Data structures to keep track of
free blocks

❖ Garbage collection
▪ Must always free memory

▪ Garbage collectors help by finding
anything reachable

▪ Failing to free results in
memory leaks

23

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Summer 2020L26: Course Wrap-Up

But remember… it’s all an illusion! 😮

❖ Context switches
▪ Don’t really have CPU to yourself

❖ Virtual Memory
▪ Don’t really have 264 bytes of

memory all to yourself

▪ Allows for indirection (remap
physical pages, sharing…)

24

CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Summer 2020L26: Course Wrap-Up

Process 3
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1
High addresses

Low
addresses

Hardware

Process 2
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

But remember… it’s all an illusion! 😮

❖ fork

▪ Creates copy of the process

❖ execv

▪ Replace with new program

❖ wait

▪ Wait for child to die (to reap it and
prevent zombies)

25

Process 1
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

CSE351, Summer 2020L26: Course Wrap-Up

Virtual Memory

26

MMU
Cache/

Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

❖ Address Translation
▪ Every memory access must first be converted from virtual to physical

▪ Indirection: just change the address mapping when switching processes

▪ Luckily, TLB (and page size) makes it pretty fast

CSE351, Summer 2020L26: Course Wrap-Up

But Memory is Also a Lie! 😮

❖ Illusion of one flat array of bytes
▪ But caches invisibly make accesses to physical addresses faster!

❖ Caches
▪ Associativity tradeoff with miss rate and access time

▪ Block size tradeoff with spatial and temporal locality

▪ Cache size tradeoff with miss rate and cost

27

“Memory”

CPU

%rip
Registers

Condition
Codes

Main Memory
DRAM

L3
Cache

L2
Cache

L1
Cache

CSE351, Summer 2020L26: Course Wrap-Up

Memory Hierarchy

28

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Summer 2020L26: Course Wrap-Up

Review of Course Themes

❖ Review course goals

▪ They should make much more sense
now!

CSE351, Summer 2020L26: Course Wrap-Up

Big Theme: Abstractions and Interfaces

❖ Computing is about abstractions

▪ (but we can’t forget reality)

❖ What are the abstractions that we use?

❖ What do you need to know about them?

▪ When do they break down and you have to peek under the
hood?

▪ What bugs can they cause and how do you find them?

❖ How does the hardware relate to the software?

▪ Become a better programmer and begin to understand the
important concepts that have evolved in building ever more
complex computer systems

30

CSE351, Summer 2020L26: Course Wrap-Up

Little Theme 1: Representation

❖ All digital systems represent everything as 0s and 1s
▪ The 0 and 1 are really two different voltage ranges in the wires

▪ Or magnetic positions on a disc, or hole depths on a DVD, or even DNA…

❖ “Everything” includes:
▪ Numbers – integers and floating point

▪ Characters – the building blocks of strings

▪ Instructions – the directives to the CPU that make up a program

▪ Pointers – addresses of data objects stored away in memory

❖ Encodings are stored throughout a computer system
▪ In registers, caches, memories, disks, etc.

❖ They all need addresses (a way to locate)
▪ Find a new place to put a new item

▪ Reclaim the place in memory when data no longer needed

31

CSE351, Summer 2020L26: Course Wrap-Up

Little Theme 2: Translation

❖ There is a big gap between how we think about
programs and data and the 0s and 1s of computers

▪ Need languages to describe what we mean

▪ These languages need to be translated one level at a time

❖ We know Java as a programming language

▪ Have to work our way down to the 0s and 1s of computers

▪ Try not to lose anything in translation!

▪ We encountered C language, assembly language, and
machine code (for the x86 family of CPU architectures)

32

CSE351, Summer 2020L26: Course Wrap-Up

Little Theme 3: Control Flow

❖ How do computers orchestrate everything they are doing?

❖ Within one program:
▪ How do we implement if/else, loops, switches?

▪ What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

▪ How do we know what to do upon “return”?

❖ Across programs and operating systems:
▪ Multiple user programs

▪ Operating system has to orchestrate them all

• Each gets a share of computing cycles

• They may need to share system resources (memory, I/O, disks)

▪ Yielding and taking control of the processor

• Voluntary or “by force”?

33

CSE351, Summer 2020L26: Course Wrap-Up

Course Perspective

❖ CSE351 will make you a better programmer
▪ Purpose is to show how software really works

▪ Understanding the underlying system makes you more effective

• Better debugging

• Better basis for evaluating performance

• How multiple activities work in concert (e.g., OS and user programs)

▪ Not just a course for hardware enthusiasts!

• What every CSE major needs to know (plus many more details)

• See many patterns that come up over and over in computing (like
caching)

▪ “Stuff everybody learns and uses and forgets not knowing”

❖ CSE351 presents a world-view that will empower you
▪ The intellectual and software tools to understand the trillions+ of 1s and

0s that are “flying around” when your program runs
34

CSE351, Summer 2020L26: Course Wrap-Up

Topics: What’s Next?

❖ Even if CSE 351 wasn’t for you, I would encourage you to explore topics
that build on its material!
▪ I know plenty of people who hated 351 but ended up loving a future topic

❖ Here are a few topics that build on the material we talked about in this
course.
▪ UW has many courses that align with these topics, other universities might too!

▪ You can also research these on your own, plenty of information online!

❖ Staying near the hardware/software interface:
▪ Digital Design – basic hardware design and circuit logic

▪ Computer Architecture – hardware design of CPUs

▪ Embedded Systems – software design for microcontrollers

❖ Systems software
▪ Programming Languages and Compilers

▪ Data Structures and Parallelism

▪ General Systems Programming – building well-structured systems in C/C++

▪ Operating Systems

▪ Networks

▪ Security
35

CSE351, Summer 2020L26: Course Wrap-Up

Thanks for a great quarter!

❖ Huge thanks to your awesome TAs!

❖ Don’t be a stranger!

▪ Feel free to send us emails with questions about anything in
the future!

36

