W UNIVERSITY of WASHINGTON

L26: Course Wrap-Up

CSE351,

Java and C (part 1) + Course Wrap-Up

CSE 351 Summer 2020

Instructor: Teaching Assistants:

Porter Jones Amy Xu

Callum Walker
Sam Wolfson

Tim Ma

ndzyuk

HEY, TURN ON THE. NELJS.

CANT. DOLNLOADING
A CD ONTO MY PHONE.

WHY?

/ 50 T CAN USE I
X MY COMPUTER
OPERATING SYSTEM

\
ENOUGH THAT (AN
TEAM ITTO TALKTO
MY TV SCREEN.

)

=

BUT THEN YoULL
BE ABLE TO
WATCH THE NEWS?

/

https://xkcd.com/1760/

DONT YOUHAVE A
COMPUTER SUENCE
DEGREE?

\ THAT JUST MEANS
T UNDERSTAND
HOW EVERYTHING

NO.
N

WENT SO LIRONG.

J

Summer 2020




W UNIVERSITY of WASHINGTON : Course Wrap- CSE351, Summer 2020

Administrivia
«» Questions doc: https://tinyurl.com/CSE351-8-21

+ Can still do hw19 (it’s optional/not for credit)
<+ hw23 due Monday (8/24) — 10:30am
= Cover @aﬁ of the material today, a few more things Friday
A\

% Lab 5 and Unit Summary 3 due tonight!(Friday 8/21)

" Cutoff is tomorrow, Saturday 8/22 @11:59pm (only one Iate
%
day can be used) 07 ca M ash gv\.,w&nb

———

f Gurec Sy B Gumdony CCice Jrows s




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Course Evaluation Reminder Meme

\
Closes Onigtt
+» Reminder to please fill out your course evaluations!! (you should
have received a couple emails with a link to the eval)

Leaving Spamming
AV, BV,

YA E® students S iy
T A N A more eval

o A alone

imgfiip.com



W UNIVERSITY of WASHINGTON L26: Course Wrap-Up

Virtual Machine Model

CSE351, Summer 2020

High-Level Lan e Program
— (e.g. Java, C)

J

S
B

ytecode compiler }
(e.g. javac Fo0o0.] ava)!

—

compile time

run time

Virtual machine (interpreter)
(e.g. java Foo)

Ahead-of-time

compiler

Native Machine Language
(e.g. x86, ARM, MIPS)




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Java Bytecode

Holds pointer this

-—

+ Like assembly code for JVM, Other arguments to method
but works on g// JVMs Other local variables
" Hardware-independent!

Typed (unIik‘e x86 assembly)
Strong JVM protections

21314
variable table

—

Sg—

operand stack
——r—— e

\9\/\4-6 ccole
ey

constant

“pool”




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Holds pointer this

JVM Ope ra nd StaCk Other arguments to method

Other local variables

[ | |
0j]1|2f3]4f
variable table
(2 integer. | =mperand stack
‘a’ = reference,
‘©’ for byte,
‘c’ for char,

\- e )
p I

v

Bytecode: iload 1 push 1st arqument from table onto stack
iload 2 push 2"¢ arqument from table onto stack
e e e
iadd pop top 2 elements from stack, add together, and

push result back onto stack
istore 3 pop result and put it into third slot in table

R mov 8 (%ebp), %Seax

No registers or stack locations! (*to (1A32) x86:|| mov 12 (sebp), Sedx

All operations use operand stack — add %edx, %eax

mov %eax, -8 (%ebp)
—




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020
A Eeployee pare O 2
Cefwi At O J

A Simple Java Method

ang.String getEmployeeName ()

// "this" object is stored at 0 in the wvar table
AN

1 getfield <Field java.lang.String name>
// getfield instruction has a 3-byte encoding

// Pop_an_glement from tog of stack, retrieve its
// specified instance field and push it onto stack

// "name" field is the fifth field of the object

// Befurns object at top of stack

Byte number: 0 1
aload 0 etfield 00

e P
S

As stored in the .class file: A2A|B4|00|05|B0O

http://en.wikipedia.org/wiki/Java bytecode instruction listings




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Class File Format

+» Every class in Java source code is compiled to its own class file

10 sections in the Java class file structure:

’ Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)

—
Version of class file format: The minor and major versions of the class file
e ——

Constant pool: Set of constant values for the class

Access flags: For example whether the class is abstract, static, final, etc.
This class: The name of the current class

Super class: The name of the super class

Interfaces: Any interfaces in the class

Fields: Any fields in the class

T —

Methods: Any methods in the class
Attributes: Any attributes of the class (for example, name of source file, etc.)

+« A .jar file collects together all of the class files needed for
the program, plus any additional resources (e.g. images)




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Compiled from Employee.java
Disassembled class Employee extends java.lang.Object {
public Employee (java.lang.String,int) ;
public java.lang.String getEmployeeName () ;

Java Bytecode | public int getEmployeeNumber () ;

Method Employee (java.lang.String, int)
aload 0
invokespecial #3 <Method java.lang.Object ()>
aload 0
aload 1
putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>
14 aload 0
15 aload 1

> javac Employee.java

> Javap —-c Employee 16 iload 2
17 invokespecial #6 <Method void
storeData (java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName ()

0 aload O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload O

1 getfield #4 <Field int idNumber>
4 ireturn

http://en.wikipedia.org/wiki/Java
bytecode instruction listings

Method void storeData(java.lang.String, int)




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Other languages for JVMs

%+ JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
Aspect), an aspect-oriented extension of Java
ColdFusion, a scripting language compiled to Java
Clojure, a functional Lisp dialect
Groovy, a scripting language
JavaFX Script, a scripting language for web apps
Jman implementation of Ruby
Jython, an implementation of Python
Rh-i—n_o—,_an implementation of JavaScript
Scala, an object-oriented and functional programming language
And many others, even including C!

Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC'ed platform

10




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Microsoft’s C# and .NET Framework

«» C# has similar motivations as Java

= Virtual machine is called the
. C# VB.NET J#
Common Language Runtime code code code

= Common Intermediate Language l l l
is the bytecode for C# and other
languages in the .NET framework

Compiler Compiler Compiler

—

Common Language Infrastructure

"

NET compatible languages compile to a
Common second platform-neutral language called

1nLt.:-rm.:~d ate Common Intermediate Language (CIL).
anguage

l

Common
Language
Runtime

}

01001100101011
11010101100110

The platform-specific Common Language
Runtime (CLR) compiles CIL to machine-
readable code that can be executed on the
current platform.




W UNIVERSITY of WASHINGTON CSE351, Summer 2020

We made it! &

L26: Course Wrap-Up

C:

Java:

car *c =
c—->miles

free(c);

malloc (sizeof (car)) ;
100;
c->gals = 17;

float mpg

get mpg(c);

Car ¢ = new Car ()
c.setMiles (100);
c.setGals (17);
float mpg =

c.getMPG () ;

Assembly

—~

‘?,—"

Tanguage:

Machine
code:

Computer
system:

get mpg:
pushg
movq

srbp
rsp, S%Srbp

srbp
|

Popq
ret

OS:

A 4

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Windows 10  0S X Yosemite
|

\/
/\




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Today

« End-to-end Review

= What happens after you write your source code?

- How code becomes a program
- How your computer executes your code

+ Victory lap and high-level concepts (key points)
= More useful for “5 years from now” than “next week’s fina

|II




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

C: The Low-Level High-Level Language

+» Cis a “hands-off” language that “exposes” more of
hardware (especially memory)
= Weakly-typed language that stresses data as bits
- Anything can be represented with a number!
= Unconstrained pointers can hold address of anything
- And no bounds checking — buffer overflow possible!

= Efficient by leaving everything up to the programmer

= “Cis good for two things: being beautiful and creating
catastrophic Odays in memory management.”
(https://medium.com/message/everything-is-broken-81e5f33a24e1)




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

C Data Types

«» C Primitive types
" Fixed sizes and alignments

" Characters (char), Integers (short, int, 1long),
Floating Point (float, double)

« C Data Structures

= Arrays — contiguous chunks of memory

- Multidimensional arrays = still one continuous chunk, but row-major
- Multi-level arrays = array of pointers to other arrays

= Structs — structured group of variables

- Struct fields are ordered according to declaration order

- Internal fragmentation: space between members to satisfy member
alignment requirements (aligned for each primitive element)

External fragmentation: space after last member to satisfy overall struct
alignment requirement (largest primitive member)




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

C and Memory

+ Using C allowed us to examine how we store and

access data in memory

®= Endianness (only applies to memory)
- Is the first byte (lowest address) the least significant (little endian) or
most significant (big endian) of your data?

= Array indices and struct fields result in calculating proper
addresses to access

+» Consequences of your code:
= Affects performance (locality)
= Affects security
+» But to understand these effects better, we had to

dive deeper...




How Code Becomes a Program

text

text

binary

binary

C source code

lgompiler (gcc -0Og -9)

Assembly files

l Assembler (gcc -coras)

Object files

Static libraries

l Linker (gcc or 1d) \

Executable program

l Loader (the OS)

‘Hardware

17




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Instruction Set Architecture

Source code Compiler (Architecture \ Hardware

Different applications Perform optimizations, Instruction set Different
or algorithms generate instructions implementations

Intel Pentium 4

Intel Core 2

Program
A

Intel Core i7

AMD Opteron

Program
B

AMD Athlon

Your
program

I
: S ARM Cortex-A53
 (AArch64/A64) :

\L""""") Apple A7




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Assembly Programmer’s View

CPU

Addresses

Registers

A——— Data

Condition
Codes

Instructions

« Programmer-visible state
= PC: the Program Counter ($rip in x86-64)

- Address of next instruction
" Named registers + Memory
- Together in “register file” = Byte-addressable array

Heavily used program data " Huge virtual address
" Condition codes space

- Store status information about most recent Private, all to yourself...
arithmetic operation

Used for conditional branching




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Program’s View

CPU

o Registers 2M-1
cIr1p High addresses

A

local variables;
procedure context

Condition
Codes

A

Dynamic Data variables allocated
(Heap) with new or malloc

static variables
Static Data (global variables in C)

) Large constants
Literals (e.g., “example”)

Instructions

Low addresses ()




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Program’s View

« Instructions

N_

= Data movement 251
High addresses

- MOV, mMOovZz, MOvVZ g local variables;

« push, pop procedure context

= Arithmetic
- add, sub, imul

v

A

= Control flow
« cmp, test Dynamic Data variables allocated

- jmp, Jje, Jjgt, ... (Heap) with new or malloc
e call, ret

static variables

Operand types Static Data (global variables in C)
= Literal: $8
. Large constants
= Register: $rdi, %al Literals (e.g., “example”)
C——
= Memory: D(Rb,Ri,S) = D+Rb+Ri*S
’

- lea: nota memory access!
Low addresses

Instructions




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Program’s View

« Procedures

. . N_
= Essential abstraction 2l
High addresses

® Recursion... local variables;
procedure context

Stack discipline
= Stack frame per call
Cheee——

v

A

" Local variables

Dynamic Data variables allocated

+ Calling convention (Heap) with new or malloc

" How to pass arguments

. ) e static variables
- Diane’s Silk Dress Costs $89 Static Data (global variables in )

= How to return data

Large constants

= Return address Literals (e.g., “example”)

= Caller-saved / callee-saved registers

o=

Instructions
Low addresses ()




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up

Program’s View

+ Heap data

" Variable size

High addresses ‘

= Variable lifetime

+ Allocator

= Balance throughput and memory
utilization

= Data structures to keep track of
free blocks

+ @Garbage collection

Must always free memory

Garbage collectors help by finding
anything reachable

Failing to free results in

memory leaks
C——

Low addresses

2N-1

0

A

A 4

A

Dynamic Data
(Heap)

Static Data

Literals

Instructions

CSE351, Summer 2020

local variables;
procedure context

variables allocated
with new or malloc

static variables
(global variables in C)

Large constants
(e.g., “example”)




W UNIVERSITY of WASHINGTON CSE351, Summer 2020

But remember... it’s all an illusion! )




But remember... it’s all an illusion!

[

Process 3
e
Process 2.__,~—,‘
e Memory
m Registers
Stack
Conditi
Codes
Dynamic Da
(Heap)
Static Data
Literals
Instructions
c
« fork -

= Creates copy of the process
v eXeCvVv

= Replace with new program
«+ walt

= Wait for child to die (to reap it and
prevent zombies)

&

Process 1
A < > Memory
Registers
Condition stack
Codes
Dynamic Da
(Heap)

Static Data

Hardware

25




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Virtual Memory

CPU Chip

PA

+ Address Translation

——

= Every memory access must first be converted from virtual to physical

o zlndirection:ljust change the address mapping when switching processes
= Tuckily, and page size) makes it pretty fast

| S




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

But Memory is Also a Lie! (&

I “Memory”
1

L1

Registers

Main Memory

Condition
Codes

« Illusion 011 one flat array of bytes

= But caches invisibly make accesses to physical addresses faster!

+ Caches
= Associativity tradeoff with miss rate and access time
= Block size tradeoff with spatial and temporal locality
= Cache size tradeoff with miss rate and cost




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Memory Hierarchy

<lns 5-10s a
registers

Qe N

" on-chip Ll\ -
Smaller, cache (SRAM) S
costlier

off-chip L2 —
per byte cache (SRAM) — ~

main memory 15-30 min

Larger,
(DRAM)

slower,
cheaper
per byte

150,000 ns sSD

local secondary storage
10,000,000 ns Disk (local disks)

66 months = 5.5 yea
(10 ms) %

- '
1-150 ms remote secondary storage \ § %’*
Ty '.' :.-‘

(distributed file systems, web servers)

1-15years

28



W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Review of Course Themes

+» Review course goals

®= They should make much more sense
now!




W UNIVERSITY of WASHINGTON CSE351, Summer 2020

Big Theme: Abstractions and Interfaces

» Computing is about abstractions
— "

= (but we can’t forget reality)
L oM
« What are the abstractlans that we use?

+ What do you need to know about them?

= When do they break down and you have to peek under the
hood?

= What bugs can they cause and how do you find them?

G

« How does the hardware relate to the software?

= Become a better programmer and begin to understand the
important concepts that have evolved in building ever more
complex computer systems




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Little Theme 1: Representation

All digital systems represent everything as Os and 1s

" The 0 and 1 are really two different voltage ranges in the wires
" Or magnetic positions on a disc, or hole depths on a DVD, or even DNA...

“Everything” includes:

= Numbers —integers and floating point

® Characters — the building blocks of strings

" |nstructions — the directives to the CPU that make up a program
= Pointers — addresses of data objects stored away in memory

Encodings are stored throughout a computer system

" |n registers, caches, memories, disks, etc.

They all need addresses (a way to locate)

" Find a new place to put a new item
= Reclaim the place in memory when data no longer needed




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Little Theme 2: Translation

+» There is a big gap between how we think about
programs and data and the Os and 1s of computers
= Need languages to describe what we mean

" These languages need to be translated one level at a time

+» We know Java as a programming language

= Have to work our way down to the Os and 1s of computers
" Try not to lose anything in translation!

= We encountered C language, assembly language, and
machine code (for the x86 family of CPU architectures)




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Little Theme 3: Control Flow

How do computers orchestrate everything they are doing?

Within one program:

= How do we implement if/else, loops, switches?

" What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

= How do we know what to do upon “return”?

+» Across programs and operating systems:
= Multiple user programs
® QOperating system has to orchestrate them all
- Each gets a share of computing cycles
- They may need to share system resources (memory, /O, disks)
" Yielding and taking control of the processor

« Voluntary or “by force”?




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Course Perspective

« CSE351 will make you a better programmer
" Purpose is to show how software really works

" Understanding the underlying system makes you more effective
- Better debugging

- Better basis for evaluating performance

- How multiple activities work in concert (e.g., OS and user programs)
"= Not just a course for hardware enthusiasts!

- What every CSE major needs to know (plus many more details)

- See many patterns that come up over and over in computing (like
caching)

QE—
= “Stuff everybody learns and uses and forgets not knowing”
« CSE351 presents a world-view that will empower you

= The intellectual and software tools to understand the trillions+ of 1s and
Os that are “flying around” when your program runs




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Topics: What’s Next?

Even if CSE 351 wasn’t for you, | would encourage you to explore topics
that build on its material!
= | know plenty of people who hated 351 but ended up loving a future topic

Here are a few topics that build on the material we talked about in this
course.

=  UW has many courses that align with these topics, other universities might too!
® You can also research these on your own, plenty of information online!

Staying near the hardware/software interface:
= Digital Design — basic hardware design and circuit logic
= Computer Architecture — hardware design of CPUs

e
" Embedded Systems — software design for microcontrollers
[—— |
Systems software

"  Programming Languages and Compilers
Lrogrammir nguag L LA
Aata=stauctyres and Parallelism

General Systems Programming — building well-structured systems in C/C++

Ope

Security




W UNIVERSITY of WASHINGTON L26: Course Wrap-Up CSE351, Summer 2020

Thanks for a great quarter!

+» Huge thanks to your awesome TAs!

+» Don’t be a stranger!

= Feel free to send us emails with questions about anything in
the future!




