
CSE351, Summer 2020L26: Course Wrap-Up

Java	and	C	(part	II)	+	Course	Wrap-Up
CSE	351	Summer	2020

Instructor: Teaching	Assistants:
Porter	Jones Amy	Xu

Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

https://xkcd.com/1760/

CSE351, Summer 2020L26: Course Wrap-Up

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-21

v Can	still	do	hw19	(it’s	optional/not	for	credit)
v hw23	due	Monday	(8/24)	– 10:30am

§ Cover	most	of	the	material	today,	a	few	more	things	Friday

v Lab	5	and	Unit	Summary	3	due	tonight!(Friday	8/21)
§ Cutoff	is	tomorrow,	Saturday	8/22	@11:59pm	(only	one	late	
day	can	be	used!)

2

CSE351, Summer 2020L26: Course Wrap-Up

Course	Evaluation	Reminder	Meme
v Reminder	to	please	fill	out	your	course	evaluations!!	(you	should	

have	received	a	couple	emails	with	a	link	to	the	eval)

3

CSE351, Summer 2020L26: Course Wrap-Up

Virtual	Machine	Model

4

High-Level	Language	Program
(e.g.	Java,	C)	

Virtual	Machine	Language
(e.g.	Java	bytecodes)

Native	Machine	Language
(e.g.	x86,	ARM,	MIPS)

Bytecode	compiler
(e.g.	javac Foo.java)

Virtual	machine	(interpreter)
(e.g.	java Foo)

Ahead-of-time
compiler

JIT
compiler

run	time

compile	time

CSE351, Summer 2020L26: Course Wrap-Up

Java	Bytecode
v Like	assembly	code	for	JVM,

but	works	on	all JVMs
§ Hardware-independent!

v Typed	(unlike	x86	assembly)
v Strong	JVM	protections

5

0 1 2 3 4 n
variable	table

operand	stack

constant
pool

Holds	pointer	this

Other	arguments	to	method

Other	local	variables

CSE351, Summer 2020L26: Course Wrap-Up

JVM	Operand	Stack

6

iload 1 // push 1st argument from table onto stack
iload 2 // push 2nd argument from table onto stack
iadd // pop top 2 elements from stack, add together, and

// push result back onto stack
istore 3 // pop result and put it into third slot in table

mov 8(%ebp), %eax
mov 12(%ebp), %edx
add %edx, %eax
mov %eax, -8(%ebp)

Compiled
to	(IA32)	x86:

Bytecode:

0 1 2 3 4 n

constant
pool

variable	table
operand	stack

JVM:

Holds	pointer	this
Other	arguments	to	method

Other	local	variables

‘i’	=	integer,
‘a’	=	reference,
‘b’	for	byte,
‘c’	for	char,
‘d’	for	double,	...

No	registers	or	stack	locations!
All	operations	use	operand	stack

CSE351, Summer 2020L26: Course Wrap-Up

A	Simple	Java	Method

7

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name>
// getfield instruction has a 3-byte encoding
// Pop an element from top of stack, retrieve its
// specified instance field and push it onto stack
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

2A B4 00 05 B0As	stored	in	the	.class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

0
aload_0 getfield 00 05 areturn

1 4Byte	number:

CSE351, Summer 2020L26: Course Wrap-Up

Class	File	Format
v Every	class	in	Java	source	code	is	compiled	to	its	own	class	file
v 10	sections	in	the	Java	class	file	structure:

§ Magic	number:		0xCAFEBABE	(legible	hex	from	James	Gosling	– Java’s	inventor)
§ Version	of	class	file	format:		The	minor	and	major	versions	of	the	class	file
§ Constant	pool:		Set	of	constant	values	for	the	class
§ Access	flags:		For	example	whether	the	class	is	abstract,	static,	final,	etc.
§ This	class:		The	name	of	the	current	class
§ Super	class:		The	name	of	the	super	class
§ Interfaces:		Any	interfaces	in	the	class
§ Fields:		Any	fields	in	the	class
§ Methods:		Any	methods	in	the	class
§ Attributes:		Any	attributes	of	the	class	(for	example,	name	of	source	file,	etc.)

v A	.jar file	collects	together	all	of	the	class	files	needed	for	
the	program,	plus	any	additional	resources	(e.g.	images)

8

CSE351, Summer 2020L26: Course Wrap-Up

Disassembled
Java	Bytecode

9

Compiled from Employee.java
class Employee extends java.lang.Object {

public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();
public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)
0 aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 aload_0
5 aload_1
6 putfield #5 <Field java.lang.String name>
9 aload_0
10 iload_2
11 putfield #4 <Field int idNumber>
14 aload_0
15 aload_1
16 iload_2
17 invokespecial #6 <Method void

storeData(java.lang.String, int)>
20 return

Method java.lang.String getEmployeeName()
0 aload_0
1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload_0
1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)
…

> javac Employee.java
> javap -c Employee

http://en.wikipedia.org/wiki/Java
_bytecode_instruction_listings

CSE351, Summer 2020L26: Course Wrap-Up

Other	languages	for	JVMs
v JVMs	run	on	so	many	computers	that	compilers	have	been	

built	to	translate	many	other	languages	to	Java	bytecode:
§ AspectJ,	an	aspect-oriented	extension	of	Java
§ ColdFusion,	a	scripting	language	compiled	to	Java
§ Clojure,	a	functional	Lisp	dialect
§ Groovy,	a	scripting	language
§ JavaFX Script,	a	scripting	language	for	web	apps
§ JRuby,	an	implementation	of	Ruby
§ Jython,	an	implementation	of	Python
§ Rhino,	an	implementation	of	JavaScript
§ Scala,	an	object-oriented	and	functional	programming	language
§ And	many	others,	even	including	C!

v Originally,	JVMs	were	designed	and	built	for	Java	(still	the	
major	use)	but	JVMs	are	also	viewed	as	a	safe,	GC’ed platform

10

CSE351, Summer 2020L26: Course Wrap-Up

Microsoft’s	C#	and	.NET	Framework
v C#	has	similar	motivations	as	Java

§ Virtual	machine	is	called	the	
Common	Language	Runtime

§ Common	Intermediate	Language	
is	the	bytecode	for	C#	and	other	
languages	in	the	.NET	framework

11

CSE351, Summer 2020L26: Course Wrap-Up

We	made	it!	☺

12

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L26: Course Wrap-Up

Today

v End-to-end	Review
§ What	happens	after	you	write	your	source	code?

• How	code	becomes	a	program
• How	your	computer	executes	your	code

v Victory	lap	and	high-level	concepts	(key	points)
§ More	useful	for	“5	years	from	now”	than	“next	week’s	final”

13

CSE351, Summer 2020L26: Course Wrap-Up

C:		The	Low-Level	High-Level	Language

v C	is	a	“hands-off”	language	that	“exposes”	more	of	
hardware	(especially	memory)
§ Weakly-typed	language	that	stresses	data	as	bits

• Anything	can	be	represented	with	a	number!

§ Unconstrained	pointers	can	hold address	of	anything
• And	no	bounds	checking	– buffer	overflow	possible!

§ Efficient	by	leaving	everything	up	to	the	programmer
§ “C	is	good	for	two	things:	being	beautiful	and	creating	
catastrophic	0days	in	memory	management.”	
(https://medium.com/message/everything-is-broken-81e5f33a24e1)

CSE351, Summer 2020L26: Course Wrap-Up

C	Data	Types

v C	Primitive	types
§ Fixed	sizes	and	alignments
§ Characters	(char),	Integers	(short,	int,	long),	
Floating	Point	(float,	double)

v C	Data	Structures
§ Arrays	– contiguous	chunks	of	memory

• Multidimensional	arrays	=	still	one	continuous	chunk,	but	row-major
• Multi-level	arrays	=	array	of	pointers	to	other	arrays

§ Structs – structured	group	of	variables
• Struct fields	are	ordered	according	to	declaration	order
• Internal fragmentation: space	between	members	to	satisfy	member	
alignment	requirements	(aligned	for	each	primitive	element)

• External fragmentation: space	after	last	member	to	satisfy	overall	struct
alignment	requirement		(largest	primitive	member)

CSE351, Summer 2020L26: Course Wrap-Up

C	and	Memory

v Using	C	allowed	us	to	examine	how	we	store	and	
access	data	in	memory
§ Endianness		(only	applies	to	memory)

• Is	the	first	byte	(lowest	address)	the	least	significant	(little	endian)	or	
most	significant	(big	endian)	of	your	data?

§ Array	indices	and	struct fields	result	in	calculating	proper	
addresses	to	access

v Consequences	of	your	code:
§ Affects	performance	(locality)
§ Affects	security

v But	to	understand	these	effects	better,	we	had	to	
dive	deeper…

CSE351, Summer 2020L26: Course Wrap-Up

How	Code	Becomes	a	Program

17

text

text

binary

binary

Compiler	(gcc –Og -S)

Assembler	(gcc -c or	as)

Linker	(gcc or	ld)

C	source	code

Assembly	files

Object	files

Executable	program

Static	libraries

Loader	(the	OS)

Hardware	

CSE351, Summer 2020L26: Course Wrap-Up

C	Language

Instruction	Set	Architecture

18

x86-64

Intel	Pentium 4

Intel	Core	2

Intel Core	i7

AMD	Opteron

AMD	Athlon

GCC

ARMv8
(AArch64/A64)

ARM	Cortex-A53

Apple	A7

Clang

Your	
program

Program	
B

Program	
A

CompilerSource	code Architecture

Different	applications
or	algorithms

Perform	optimizations,
generate	instructions

Different	
implementations

Hardware
Instruction	set

CISC

RISC

CSE351, Summer 2020L26: Course Wrap-Up

CPU

Assembly	Programmer’s	View

v Programmer-visible	state
§ PC:		the	Program	Counter	(%rip in	x86-64)

• Address	of	next	instruction
§ Named	registers

• Together	in	“register	file”
• Heavily	used	program	data

§ Condition	codes
• Store	status	information	about	most	recent	
arithmetic	operation

• Used	for	conditional	branching 19

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

v Memory
§ Byte-addressable	array
§ Huge	virtual address	

space
§ Private,	all	to	yourself…

CSE351, Summer 2020L26: Course Wrap-Up

CPU

Program’s	View

20

%rip Registers

Memory

Condition
Codes

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

Large	constants	
(e.g.,	“example”)

static variables
(global	variables	in	C)

variables	allocated
with	new or	malloc

local	variables;
procedure	context

0

2N-1
High	addresses

Low	addresses

CSE351, Summer 2020L26: Course Wrap-Up

Program’s	View
v Instructions

§ Data	movement
• mov, movz, movz
• push, pop

§ Arithmetic
• add, sub, imul

§ Control	flow
• cmp, test
• jmp, je, jgt, ...
• call, ret

v Operand	types
§ Literal:		$8
§ Register:		%rdi, %al
§ Memory:		D(Rb,Ri,S)	=	D+Rb+Ri*S

• lea:		not	a	memory	access!

21

Memory

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

Large	constants	
(e.g.,	“example”)

static variables
(global	variables	in	C)

variables	allocated
with	new or	malloc

local	variables;
procedure	context

0

2N-1
High	addresses

Low	addresses

CSE351, Summer 2020L26: Course Wrap-Up

Program’s	View
v Procedures

§ Essential	abstraction
§ Recursion…

v Stack	discipline
§ Stack	frame	per	call
§ Local	variables

v Calling	convention
§ How	to	pass	arguments

• Diane’s	Silk	Dress	Costs	$89
§ How	to	return	data
§ Return	address
§ Caller-saved	/	callee-saved	registers

22

Memory

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

Large	constants	
(e.g.,	“example”)

static variables
(global	variables	in	C)

variables	allocated
with	new or	malloc

local	variables;
procedure	context

0

2N-1
High	addresses

Low	addresses

CSE351, Summer 2020L26: Course Wrap-Up

Program’s	View
v Heap	data

§ Variable	size
§ Variable	lifetime

v Allocator
§ Balance	throughput and	memory	

utilization
§ Data	structures	to	keep	track	of	

free	blocks

v Garbage	collection
§ Must	always	free	memory
§ Garbage	collectors	help	by	finding	

anything	reachable
§ Failing	to	free	results	in

memory	leaks
23

Memory

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

Large	constants	
(e.g.,	“example”)

static variables
(global	variables	in	C)

variables	allocated
with	new or	malloc

local	variables;
procedure	context

0

2N-1
High	addresses

Low	addresses

CSE351, Summer 2020L26: Course Wrap-Up

But	remember…	it’s	all	an	illusion!	😮

v Context	switches
§ Don’t	really	have	CPU	to	yourself

v Virtual	Memory
§ Don’t	really	have	264 bytes	of	

memory	all	to	yourself
§ Allows	for	indirection	(remap	

physical	pages,	sharing…)

24

CPU

%rip Registers

Memory

Condition
Codes

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

Large	constants	
(e.g.,	“example”)

static variables
(global	variables	in	C)

variables	allocated
with	new or	malloc

local	variables;
procedure	context

0

2N-1
High	addresses

Low	addresses

CSE351, Summer 2020L26: Course Wrap-Up

Process	3
CPU

%rip Registers
Memory

Condition
Codes

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

0

2N-1
High	addresses

Low	
addresses

Hardware

Process	2
CPU

%rip Registers
Memory

Condition
Codes

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

0

2N-1
High	addresses

Low	
addresses

But	remember…	it’s	all	an	illusion!	😮

v fork
§ Creates	copy	of	the	process

v execv
§ Replace	with	new	program

v wait
§ Wait	for	child	to	die	(to	reap	it	and	

prevent	zombies)

25

Process	1
CPU

%rip Registers
Memory

Condition
Codes

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack

0

2N-1
High	addresses

Low	
addresses

CSE351, Summer 2020L26: Course Wrap-Up

Virtual	Memory

26

MMU Cache/
Memory

PA

Data

CPU VA

CPU	Chip

PTE

1

2

4

5

TLB

VPN 3

v Address	Translation
§ Every	memory	access	must	first	be	converted	from	virtual	to	physical
§ Indirection:		just	change	the	address	mapping	when	switching	processes
§ Luckily,	TLB	(and	page	size)	makes	it	pretty	fast

CSE351, Summer 2020L26: Course Wrap-Up

But	Memory	is	Also	a	Lie!	😮

v Illusion of	one	flat	array	of	bytes
§ But	caches invisibly	make	accesses	to	physical	addresses	faster!

v Caches
§ Associativity tradeoff	with	miss	rate	and	access	time
§ Block	size tradeoff	with	spatial	and	temporal	locality
§ Cache	size	tradeoff	with	miss	rate	and	cost

27

“Memory”

CPU

%rip
Registers

Condition
Codes

Main	Memory
DRAM

L3	
Cache

L2	
Cache

L1	
Cache

CSE351, Summer 2020L26: Course Wrap-Up

Memory	Hierarchy

28

registers

on-chip	L1
cache	(SRAM)

main	memory
(DRAM)

local	secondary	storage
(local	disks)

Larger,		
slower,	
cheaper	
per	byte

remote	secondary	storage
(distributed	file	systems,	web	servers)

off-chip	L2
cache	(SRAM)

Smaller,
faster,
costlier
per	byte

<1	ns

1	ns

5-10	ns

100	ns

150,000	ns

10,000,000	ns
(10	ms)

1-150	ms

SSD

Disk

5-10	s

1-2	min

15-30	min

31	days

66	months	=	5.5	years

1	- 15	years

CSE351, Summer 2020L26: Course Wrap-Up

Review	of	Course	Themes

v Review	course	goals
§ They	should	make	much	more	sense	
now!

CSE351, Summer 2020L26: Course Wrap-Up

Big	Theme:		Abstractions	and	Interfaces

v Computing	is	about	abstractions
§ (but	we	can’t	forget	reality)

v What	are	the	abstractions	that	we	use?
v What	do	you need	to	know	about	them?

§ When	do	they	break	down	and	you	have	to	peek	under	the	
hood?

§ What	bugs	can	they	cause	and	how	do	you	find	them?

v How	does	the	hardware	relate	to	the	software?
§ Become	a	better	programmer	and	begin	to	understand	the	
important	concepts	that	have	evolved	in	building	ever	more	
complex	computer	systems

30

CSE351, Summer 2020L26: Course Wrap-Up

Little	Theme	1:		Representation

v All	digital	systems	represent	everything	as	0s	and	1s
§ The	0	and	1	are	really	two	different	voltage	ranges	in	the	wires
§ Or	magnetic	positions	on	a	disc,	or	hole	depths	on	a	DVD,	or	even	DNA…

v “Everything”	includes:
§ Numbers	– integers	and	floating	point
§ Characters	– the	building	blocks	of	strings
§ Instructions	– the	directives	to	the	CPU	that	make	up	a	program
§ Pointers	– addresses	of	data	objects	stored	away	in	memory

v Encodings	are	stored	throughout	a	computer	system
§ In	registers,	caches,	memories,	disks,	etc.

v They	all	need	addresses	(a	way	to	locate)
§ Find	a	new	place	to	put	a	new	item	
§ Reclaim	the	place	in	memory	when	data	no	longer	needed

31

CSE351, Summer 2020L26: Course Wrap-Up

Little	Theme	2:		Translation

v There	is	a	big	gap	between	how	we	think	about	
programs	and	data	and	the	0s	and	1s	of	computers
§ Need languages to	describe	what	we	mean
§ These	languages	need	to	be	translated one	level	at	a	time

v We	know	Java	as	a	programming	language
§ Have	to	work	our	way	down	to	the	0s	and	1s	of	computers
§ Try	not	to	lose	anything	in	translation!
§ We	encountered	C	language,	assembly	language,	and	
machine	code	(for	the	x86	family	of	CPU	architectures)

32

CSE351, Summer 2020L26: Course Wrap-Up

Little	Theme	3:		Control	Flow
v How	do	computers	orchestrate	everything	they	are	doing?
v Within	one	program:

§ How	do	we	implement	if/else,	loops,	switches?
§ What	do	we	have	to	keep	track	of	when	we	call	a	procedure,	and	then	

another,	and	then	another,	and	so	on?
§ How	do	we	know	what	to	do	upon	“return”?

v Across	programs	and	operating	systems:
§ Multiple	user	programs
§ Operating	system	has	to	orchestrate	them	all	

• Each	gets	a	share	of	computing	cycles
• They	may	need	to	share	system	resources	(memory,	I/O,	disks)

§ Yielding	and	taking	control	of	the	processor
• Voluntary	or	“by	force”?

33

CSE351, Summer 2020L26: Course Wrap-Up

Course	Perspective
v CSE351	will	make	you	a	better	programmer

§ Purpose	is	to	show	how	software	really	works
§ Understanding	the	underlying	system	makes	you	more	effective

• Better	debugging
• Better	basis	for	evaluating	performance
• How	multiple	activities	work	in	concert	(e.g.,	OS	and	user	programs)

§ Not	just	a	course	for	hardware	enthusiasts!
• What	every CSE	major	needs	to	know	(plus	many	more	details)
• See	many	patterns that	come	up	over	and	over	in	computing	(like	
caching)

§ “Stuff	everybody	learns	and	uses	and	forgets	not	knowing”

v CSE351	presents	a	world-view	that	will	empower	you
§ The	intellectual	and	software	tools	to	understand	the	trillions+	of	1s	and	

0s	that	are	“flying	around”	when	your	program	runs
34

CSE351, Summer 2020L26: Course Wrap-Up

Topics:		What’s	Next?
v Even	if	CSE	351	wasn’t	for	you,	I	would	encourage	you	to	explore	topics	

that	build	on	its	material!
§ I	know	plenty	of	people	who	hated	351	but	ended	up	loving	a	future	topic

v Here	are	a	few	topics	that	build	on	the	material	we	talked	about	in	this	
course.	
§ UW	has	many	courses	that	align	with	these	topics,	other	universities	might	too!
§ You	can	also	research	these	on	your	own,	plenty	of	information	online!

v Staying	near	the	hardware/software	interface:
§ Digital	Design	– basic	hardware	design	and	circuit	logic
§ Computer	Architecture	– hardware	design	of	CPUs
§ Embedded	Systems	– software	design	for	microcontrollers

v Systems	software
§ Programming	Languages	and	Compilers
§ Data	Structures	and	Parallelism
§ General	Systems	Programming	– building	well-structured	systems	in	C/C++
§ Operating	Systems
§ Networks
§ Security

35

CSE351, Summer 2020L26: Course Wrap-Up

Thanks	for	a	great	quarter!

v Huge	thanks	to	your	awesome	TAs!

v Don’t	be	a	stranger!
§ Feel	free	to	send	us	emails	with	questions	about	anything	in	
the	future!

36

