
CSE351, Summer 2020L25: Java and C - I

Java	and	C	(part	I)
CSE	351	Summer	2020

Instructor: Teaching	Assistants:
Porter	Jones Amy	Xu

Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

https://xkcd.com/801/

CSE351, Summer 2020L25: Java and C - I

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-19

v Can	still	do	hw19	(it’s	optional/not	for	credit)
v hw23	due	Monday	(8/24)	– 10:30am

§ Cover	most	of	the	material	today,	a	few	more	things	Friday

v Section	tomorrow	is	TA’s	Choice	&	time	for	questions
§ See	cool	applications	of	351	material	and	ask	your	TAs	
questions!

2

CSE351, Summer 2020L25: Java and C - I

Administrivia
v Lab	5	due	last	day	of	quarter	(Friday	8/21)

§ Cutoff	is	Saturday	8/22	@11:59pm	(only	one	late	day	can	be	
used!)

§ The	most	significant	amount	of	C	programming	you	will	do	in	this	
class	– combines	lots	of	topics	from	this	class:	pointers,	bit	
manipulation,	structs,	examining	memory

§ Understanding	the	concepts	first and	efficient debugging	will	save	
you	lots	of	time

§ Can	be	difficult	to	debug	so	please	start	early	and	use	OH
§ Light	style	grading
§ hw22	will	help	get	you	started!

v Unit	Summary	3	due	last	day	of	quarter	(Friday	8/21)
§ Cutoff	is	Saturday	8/22	@11:59pm	(only	one	late	day	can	be	

used!)

3

CSE351, Summer 2020L25: Java and C - I

Course	Evaluation	Reminder	Meme
v Reminder	to	please	fill	out	your	course	evaluations!!	(you	should	

have	received	an	email	with	a	link	to	the	eval)
v The	“Spamming	Your	Students	About	Course	Evals”	Starter	Pack:

4

CSE351, Summer 2020L25: Java and C - I

Roadmap

5

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L25: Java and C - I

Java	vs. C

v Reconnecting	to	Java	(hello	CSE143!)
§ But	now	you	know	a	lot	more	about	what	really	happens	
when	we	execute	programs

v We’ve learned about	the	following items	in	C;	now
we’ll see what they look	like for	Java:
§ Representation	of	data
§ Pointers	/	references
§ Casting
§ Function	/	method	calls	including	dynamic	dispatch

6

CSE351, Summer 2020L25: Java and C - I

Worlds	Colliding

v CSE351	has	given	you	a	“really	different	feeling”	
about	what	computers	do	and	how	programs	execute

v We	have	occasionally	contrasted	to	Java,	but	CSE143	
may	still	feel	like	“a	different	world”
§ It’s	not	– it’s	just	a	higher-level	of	abstraction
§ Connect	these	levels	via	how-one-could-implement-Java in	
351	terms

7

CSE351, Summer 2020L25: Java and C - I

Meta-point	to	this	lecture

v None	of	the	data	representations	we	are	going	to	talk	
about	are	guaranteed by Java

v In	fact,	the	language	simply	provides	an	abstraction
(Java	language	specification)
§ Tells	us	how	code	should	behave	for	different	language	
constructs,	but	we	can't	easily	tell	how	things	are	really	
represented

§ But	it	is	important	to	understand	an implementation of	the	
lower	levels	– useful	in	thinking	about	your	program

8

CSE351, Summer 2020L25: Java and C - I

Data	in	Java

v Integers,	floats,	doubles,	pointers	– same	as	C
§ “Pointers”	are	called	“references”	in	Java,	but	are	much	
more	constrained	than	C’s	general	pointers

§ Java’s	portability-guarantee	fixes	the	sizes	of	all	types
• Example:	int is	4	bytes	in	Java	regardless	of	machine

§ No	unsigned	types	to	avoid	conversion	pitfalls
• Added	some	useful	methods	in	Java	8	(also	use	bigger	signed	types)

v null is	typically	represented	as	0 but	“you	can’t	tell”
v Much	more	interesting:

§ Arrays
§ Characters	and	strings
§ Objects

9

CSE351, Summer 2020L25: Java and C - I

Data	in	Java:		Arrays
v Every	element	initialized	to	0 or	null
v Length	specified	in	immutable	field	at	start	of	array	(int – 4	

bytes)
§ array.length returns	value	of	this	field

v Since	it	has	this	info,	what	can	it	do?

10

int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

5 00 00 00 00 00
0 4 20 24

int[] array	=	new int[5];

CSE351, Summer 2020L25: Java and C - I

Data	in	Java:		Arrays
v Every	element	initialized	to	0 or	null
v Length	specified	in	immutable	field	at	start	of	array	(int – 4	

bytes)
§ array.length returns	value	of	this	field

v Every	access	triggers	a	bounds-check
§ Code	is	added	to	ensure	the	index	is	within	bounds
§ Exception	if	out-of-bounds

11

int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

To	speed	up	bounds-checking:
• Length	field	is	likely	in	cache
• Compiler	may	store	length	field	

in	register	for	loops
• Compiler	may	prove	that	some	

checks	are	redundant5 00 00 00 00 00
0 4 20 24

int[] array	=	new int[5];

CSE351, Summer 2020L25: Java and C - I

Data	in	Java:		Characters	&	Strings
v Two-byte	Unicode	instead	of	ASCII

§ Represents	most	of	the	world’s	alphabets

v String	not	bounded	by	a	'\0' (null	character)
§ Bounded	by	hidden	length	field	at	beginning	of	string

v All	String	objects	read-only	(vs.	StringBuffer)

12

Example:		the	string	“CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16
6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Summer 2020L25: Java and C - I

Data	in	Java:		Objects
v Data	structures	(objects)	are	always	stored	by	reference,	never	

stored	“inline”
§ Include	complex	data	types	(arrays,	other	objects,	etc.)	using	references

13

C:

§ a[] stored	“inline”	as	part	of	
struct

struct rec {
int i;
int a[3];
struct rec *p;

};

Java:

§ a stored	by	reference	in	object

class Rec {
int i;
int[] a = new int[3];
Rec p;
...

}

i a p
0 4 16 24

i a p
0 4 2012

4 16
3

0

CSE351, Summer 2020L25: Java and C - I

Pointer/reference	fields	and	variables
v In	C,	we	have	“->”	and	“.”	for	field	selection	depending	on	

whether	we	have	a	pointer	to	a	struct or	a	struct
§ (*r).a is	so	common	it	becomes	r->a

v In	Java,	all	non-primitive	variables	are	references	to	objects
§ We	always	use	r.a notation
§ But	really	follow	reference	to	r with	offset	to	a,	just	like	r->a in	C
§ So	no	Java	field	needs	more	than	8	bytes

14

struct rec *r = malloc(...);
struct rec r2;
r->i = val;
r->a[2] = val;
r->p = &r2;

r = new Rec();
r2 = new Rec();
r.i = val;
r.a[2] = val;
r.p = r2;

C: Java:

CSE351, Summer 2020L25: Java and C - I

Pointers/References
v Pointers in	C	can	point	to	any	memory	address
v References in	Java	can	only	point	to	[the	starts	of]	objects

§ Can	only	be	dereferenced	to	access	a	field	or	element	of	that	object

15

struct rec {
int i;
int a[3];
struct rec *p;

};
struct rec* r = malloc(…);
some_fn(&(r->a[1])); // ptr

class Rec {
int i;
int[] a = new int[3];
Rec p;

}
Rec r = new Rec();
some_fn(r.a, 1); // ref, index

r r

Xi a p
0 4 16 24

i a p
0 4 2012

int[3]
4 16

3
0

Java:C:

CSE351, Summer 2020L25: Java and C - I

Casting	in	C	(example	from	Lab	5)
v Can	cast	any	pointer	into	any	other	pointer

§ Changes	dereference	and	arithmetic	behavior

16

struct BlockInfo {
size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

};
typedef struct BlockInfo BlockInfo;
...
int x;
BlockInfo *b;
BlockInfo *newBlock;
...
newBlock = (BlockInfo *) ((char *) b + x);
...

Cast	back	into	
BlockInfo * to	use	
as	BlockInfo struct

Cast	b into	char * to	
do	unscaled	addition

s n p
80 16 24

s n p
x

CSE351, Summer 2020L25: Java and C - I

Type-safe	casting	in	Java
v Can	only	cast	compatible	object	references

§ Based	on	class	hierarchy

17

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

CSE351, Summer 2020L25: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe	casting	in	Java
v Can	only	cast	compatible	object	references

§ Based	on	class	hierarchy

18

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

✓ Everything	needed	for	Vehicle also	in	Car
✓ v1 is	declared	as	type	Vehicle
✗ Compiler	error:		Incompatible	type	– elements	in	

Car that	are	not	in	Boat (siblings)

CSE351, Summer 2020L25: Java and C - I

Polling	Question	[Java	I]

v Given:	
Vehicle v = new Vehicle();

v What	happens	with	this	line	of	code:
Boat b2 = (Boat) v;

§ Vote	at	http://pollev.com/pbjones

A. Compiles	and	Runs	with	no	errors
B. Compiler	error
C. Compiles	fine,	then	Run-time	error
D. We’re	lost…

19

CSE351, Summer 2020L25: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe	casting	in	Java
v Can	only	cast	compatible	object	references

§ Based	on	class	hierarchy

20

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

✓ Everything	needed	for	Vehicle also	in	Car
✓ v1 is	declared	as	type	Vehicle
✗ Compiler	error:		Incompatible	type	– elements	in	

Car that	are	not	in	Boat (siblings)
✗ Compiler	error:		Wrong	direction	– elements	Car

not	in	Vehicle (wheels)
✗ Runtime	error:		Vehicle does	not	contain	all	

elements	in	Boat (propellers)
✓ v2 refers	to	a	Car at	runtime
✗ Compiler	error:		Unconvertable	types	– b1 is	

declared	as	type	Boat

CSE351, Summer 2020L25: Java and C - I

Java	Object	Definitions

21

class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}
...
Point p = new Point();
...

constructor

fields

method(s)

creation

CSE351, Summer 2020L25: Java and C - I

Java	Objects	and	Method	Dispatch

v Virtual	method	table	(vtable)
§ Like	a	jump	table	for	instance	(“virtual”)	methods	plus	other	class	info
§ One	table	per	class
§ Each	object	instance	contains	a	vtable pointer	(vptr)

v Object	header :	GC	info,	hashing	info,	lock	info,	etc.
§ Why	no	size?	

22

code for Point() code for samePlace()

vtable for	class	Point:	

q
xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351, Summer 2020L25: Java and C - I

Java	Constructors
v When	we	call	new:		allocate	space	for	object	(data	fields	and	

references),	initialize	to	zero/null,	and	run	constructor	method

23

Point p = new Point(); Point* p = calloc(1,sizeof(Point));
p->header = ...;
p->vptr = &Point_vtable;
p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for	class	Point:	

p
xvptr yheader

Point object

C	pseudo-translation:

CSE351, Summer 2020L25: Java and C - I

Java	Methods
v Static methods	are	just	like	functions
v Instance methods:

§ Can	refer	to	this;
§ Have	an	implicit	first	parameter	for	this;	and
§ Can	be	overridden	in	subclasses

v The	code	to	run	when	calling	an	instance	method	is	chosen	at	
runtime by	lookup	in	the	vtable

24

p.samePlace(q); p->vptr[1](p, q);
Java: C	pseudo-translation:

code for Point() code for samePlace()

vtable for	class	Point:	

p
xvptr yheader

Point object

CSE351, Summer 2020L25: Java and C - I

Subclassing

v Where	does	“z”	go?		At	end	of	fields	of	Point
§ Point fields	are	always	in	the	same	place,	so	Point code	can	run	on	
ThreeDPoint objects	without	modification

v Where	does	pointer	to	code	for	two	new	methods	go?
§ No	constructor,	so	use	default	Point constructor
§ To	override	“samePlace”,	use	same	vtable position
§ Add	new	pointer	at	end	of	vtable for	new	method	“sayHi”

25

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

CSE351, Summer 2020L25: Java and C - I

Subclassing

26

New code	for
samePlace

Old code	for	
constructor

sayHi tacked	on	at	end Code	for	
sayHi

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

xvptr yheader

ThreeDPoint object
z

constructor samePlacevtable for	ThreeDPoint:	
(not	Point)

sayHi

z tacked	on	at	end

CSE351, Summer 2020L25: Java and C - I

code for Point()

code for Point’s samePlace()
Point vtable:	

xvptr yheader

Point object

p ???

Dynamic	Dispatch

27

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtr[1](p, q);

Java: C	pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object
z

ThreeDPoint vtable:

CSE351, Summer 2020L25: Java and C - I

Ta-da!

v In	CSE143,	it	may	have	seemed	“magic”	that	an	
inheritedmethod	could	call	an	overridden	method
§ You	were	tested	on	this	endlessly

v The	“trick”	in	the	implementation	is	this	part:
p->vptr[i](p,q)

§ In	the	body	of	the	pointed-to	code,	any	calls	to	(other)	
methods	of	this will	use	p->vptr

§ Dispatch	determined	by	p,	not	the	class	that	defined	a	
method

28

CSE351, Summer 2020L25: Java and C - I

Practice	Question
v Assume:		64-bit	pointers,	Java	objects	aligned	to	8	B	with	8-B	header
v What	are	the	sizes	of	the	things	being	pointed	at	by	ptr_c

and	ptr_j?

29

struct c {
int i;
char s[3];
int a[3];
struct c *p;

};
struct c* ptr_c;

class jobj {
int i;
String s = "hi";
int[] a = new int[3];
jobj p;

}
jobj ptr_j = new jobj();

CSE351, Summer 2020L25: Java and C - I

Practice	Question
What	would	you	expect	to	
be	the	order	of	contents	in	an	
instance	of	the	Car	class?

A. header,	Vehicle vtable ptr,	passengers,			
Car vtable ptr,	wheels

B. Vehicle vtable ptr,	passengers, wheels
C. header,	Vehicle vtable ptr,	Car vtable ptr,	

passengers, wheels
D. header,	Car vtable ptr,	passengers, wheels
E. We’re	lost…

30

class Vehicle {
int passengers;
// methods not shown

}
class Car extends Vehicle {
int wheels;
// methods not shown

}

CSE351, Summer 2020L25: Java and C - I

Hardware	Hardware	

Implementing	Programming	Languages
v Many	choices	in	how	to	implement	programming	models
v We’ve	talked	about	compilation,	can	also	interpret
v Interpreting languages	has	a	long	history

§ Lisp,	an	early	programming	language,	was	interpreted

v Interpreters are	still	in	common	use:
§ Python,	Javascript,	Ruby,	Matlab,	PHP,	Perl,	…

31

Your		source	code

Binary	executable	

Interpreter	
implementation	

Interpreter	binary	

Your	source	code

CSE351, Summer 2020L25: Java and C - I

An	Interpreter	is	a	Program
v Execute	(something	close	to)	the	source	code directly
v Simpler/no	compiler	– less	translation
v More	transparent	to	debug	– less	translation
v Easier	to	run	on	different	architectures	– runs	in	a	simulated	

environment	that	exists	only	inside	the	interpreter process
§ Just	port	the	interpreter	(program),	not	the	program-being-interpreted

v Slower	and	harder	to	optimize

32

Interpreter	
implementation	

Interpreter	binary	

Your	source	code

CSE351, Summer 2020L25: Java and C - I

Interpreter	vs.	Compiler
v An	aspect	of	a	language	implementation

§ A	language	can	have	multiple	implementations
§ Some	might	be	compilers	and	other	interpreters

v “Compiled	languages”	vs.	“Interpreted	languages”	a	misuse	of	
terminology
§ But	very	common	to	hear	this
§ And	has	some validation	in	the	real	world	(e.g.	JavaScript	vs.	C)

v Also,	as	about	to	see,	modern	language	implementations	are	
often	a	mix	of	the	two.	E.g.	:
§ Compiling	to	a	bytecode	language,	then	interpreting
§ Doing	just-in-time	compilation	of	parts	to	assembly	for	performance

33

CSE351, Summer 2020L25: Java and C - I

“The	JVM”

v Java	programs	are	usually	run	by	a	
Java	virtual	machine	(JVM)

§ JVMs	interpret an	intermediate	language	called	Java	
bytecode

§ Many	JVMs	compile	bytecode to	native	machine	code	
• Just-in-time	(JIT)	compilation
• http://en.wikipedia.org/wiki/Just-in-time_compilation

§ Java	is	sometimes	compiled	ahead	of	time	(AOT)	like	C

34

Note:	The	JVM	is	different	than	the	CSE	VM	running	
on	VMWare.		Yet another use	of	the	word	“virtual”!

CSE351, Summer 2020L25: Java and C - I

Compiling	and	Running	Java
1. Save	your	Java	code	in	a	.java file

2. To	run	the	Java	compiler:
§ javac Foo.java

§ The	Java	compiler	converts	Java	into	Java	bytecodes
• Stored	in	a	.class file

3. To	execute	the	program	stored	in	the	bytecodes,	Java	
bytecodes	can	be	interpreted	by	a	program	(an	interpreter)
§ For	Java,	this	interpreter	is	called	the	Java	Virtual	Machine	(the	JVM)
§ To	run	the	virtual	machine:
§ java Foo

§ This	Loads	the	contents	of	Foo.class and	interprets	the	bytecodes

35

CSE351, Summer 2020L25: Java and C - I

Virtual	Machine	Model

36

High-Level	Language	Program
(e.g.	Java,	C)	

Virtual	Machine	Language
(e.g.	Java	bytecodes)

Native	Machine	Language
(e.g.	x86,	ARM,	MIPS)

Bytecode	compiler
(e.g.	javac Foo.java)

Virtual	machine	(interpreter)
(e.g.	java Foo)

Ahead-of-time
compiler

JIT
compiler

run	time

compile	time

CSE351, Summer 2020L25: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe	casting	in	Java
v Can	only	cast	compatible	object	references

§ Based	on	class	hierarchy

37

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

✓ Everything	needed	for	Vehicle also	in	Car
✓ v1 is	declared	as	type	Vehicle
✗ Compiler	error:		Incompatible	type	– elements	in	

Car that	are	not	in	Boat (siblings)
✗ Compiler	error:		Wrong	direction	– elements	Car

not	in	Vehicle (wheels)
✗ Runtime	error:		Vehicle does	not	contain	all	

elements	in	Boat (propellers)
✓ v2 refers	to	a	Car at	runtime
✗ Compiler	error:		Unconvertable	types	– b1 is	

declared	as	type	Boat

