
CSE351, Summer 2020L24: Memory Allocation III

Memory Allocation III
CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

https://xkcd.com/835/

https://xkcd.com/835/

CSE351, Summer 2020L24: Memory Allocation III

Administrivia
❖ Questions doc: https://tinyurl.com/CSE351-8-17

❖ hw19 is optional
▪ Can complete it at any point before the quarter ends

▪ Practice with virtual memory concepts

❖ hw22 due Wednesday (8/19) – 10:30am
▪ Helpful for Lab 5!

❖ hw23 due Monday (8/24) – 10:30am
▪ Won’t cover material until Wed this week

❖ Section Thursday is TA’s Choice & time for questions
▪ See cool applications of 351 material and ask your TAs questions!

2

https://tinyurl.com/CSE351-8-17

CSE351, Summer 2020L24: Memory Allocation III

Administrivia
❖ Lab 5 due last day of quarter (Friday 8/21)
▪ Cutoff is Saturday 8/22 @11:59pm (only one late day can be

used!)
▪ The most significant amount of C programming you will do in this

class – combines lots of topics from this class: pointers, bit
manipulation, structs, examining memory

▪ Understanding the concepts first and efficient debugging will save
you lots of time

▪ Can be difficult to debug so please start early and use OH
▪ Light style grading
▪ hw22 will help get you started!

❖ Unit Summary 3 due last day of quarter (Friday 8/21)
▪ Cutoff is Saturday 8/22 @11:59pm (only one late day can be

used!)

3

CSE351, Summer 2020L24: Memory Allocation III

Allocation Policy Tradeoffs

❖ Data structure of blocks on lists

▪ Implicit (free/allocated), explicit (free), segregated (many
free lists) – others possible!

❖ Placement policy: first-fit, next-fit, best-fit

▪ Throughput vs. amount of fragmentation

❖ When do we split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

❖ When do we coalesce free blocks?
▪ Immediate coalescing: Every time free is called

▪ Deferred coalescing: Defer coalescing until needed
• e.g. when scanning free list for malloc or when external

fragmentation reaches some threshold
4

CSE351, Summer 2020L24: Memory Allocation III

More Info on Allocators

❖ D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

▪ The classic reference on dynamic storage allocation

❖ Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)

5

CSE351, Summer 2020L24: Memory Allocation III

Memory Allocation

❖ Dynamic memory allocation

▪ Introduction and goals

▪ Allocation and deallocation (free)

▪ Fragmentation

❖ Explicit allocation implementation

▪ Implicit free lists

▪ Explicit free lists (Lab 5)

▪ Segregated free lists

❖ Implicit deallocation: garbage collection

❖ Common memory-related bugs in C

6

CSE351, Summer 2020L24: Memory Allocation III

Wouldn’t it be nice…

❖ If we never had to free memory?

❖ Do you free objects in Java?

▪ Reminder: implicit allocator

7

CSE351, Summer 2020L24: Memory Allocation III

Garbage Collection (GC)

❖ Garbage collection: automatic reclamation of heap-allocated
storage – application never explicitly frees memory

❖ Common in implementations of functional languages, scripting
languages, and modern object oriented languages:
▪ Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

❖ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage

8

void foo() {

int* p = (int*) malloc(128);

return; /* p block is now garbage! */

}

(Automatic Memory Management)

CSE351, Summer 2020L24: Memory Allocation III

Garbage Collection

❖ How does the memory allocator know when memory
can be freed?

▪ In general, we cannot know what is going to be used in the
future since it depends on conditionals

▪ But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

❖ Memory allocator needs to know what is a pointer
and what is not – how can it do this?

▪ Sometimes with help from the compiler

9

CSE351, Summer 2020L24: Memory Allocation III

Memory as a Graph

❖ We view memory as a directed graph
▪ Each allocated heap block is a node in the graph

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

10

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Summer 2020L24: Memory Allocation III

Garbage Collection

❖ Dynamic memory allocator can free blocks if there are
no pointers to them

❖ How can it know what is a pointer and what is not?

❖ We’ll make some assumptions about pointers:

▪ Memory allocator can distinguish pointers from non-
pointers

▪ All pointers point to the start of a block in the heap

▪ Application cannot hide pointers
(e.g. by coercing them to a long, and then back again)

11

CSE351, Summer 2020L24: Memory Allocation III

Classical GC Algorithms

❖ Mark-and-sweep collection (McCarthy, 1960)
▪ Does not move blocks (unless you also “compact”)

❖ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

❖ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

❖ Generational Collectors (Lieberman and Hewitt, 1983)

▪ Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

❖ For more information:
▪ Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.

▪ Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

12

CSE351, Summer 2020L24: Memory Allocation III

Mark and Sweep Collecting

❖ Can build on top of malloc/free package
▪ Allocate using malloc until you “run out of space”

❖ When out of space:
▪ Use extra mark bit in the header of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

13

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

CSE351, Summer 2020L24: Memory Allocation III

Assumptions For a Simple Implementation

❖ Application can use functions to allocate memory:
▪ b=new(n) returns pointer, b, to new block with all locations cleared

▪ b[i] read location i of block b into register

▪ b[i]=v write v into location i of block b

❖ Each block will have a header word (accessed at b[-1])

❖ Functions used by the garbage collector:
▪ is_ptr(p) determines whether p is a pointer to a block

▪ length(p) returns length of block pointed to by p, not including
header

▪ get_roots() returns all the roots

14

Non-testable
Material

CSE351, Summer 2020L24: Memory Allocation III

Mark

❖ Mark using depth-first traversal of the memory graph

15

ptr mark(ptr p) { // p: some word in a heap block

if (!is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit(p); // set the mark bit

for (i=0; i<length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block

return;

}

Before mark

root

After mark Mark bit set

Non-testable
Material

CSE351, Summer 2020L24: Memory Allocation III

Sweep

❖ Sweep using sizes in headers

16

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap

while (p < end) { // while not at end of heap

if (markBitSet(p)) // check if block is marked

clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p); // free the block

p += length(p); // adjust pointer to next block

}

}

Non-testable
Material

After mark Mark bit set

After sweep freefree

CSE351, Summer 2020L24: Memory Allocation III

Conservative Mark & Sweep in C

❖ Would mark & sweep work in C?
▪ is_ptr determines if a word is a pointer by checking if it points to an

allocated block of memory

▪ But in C, pointers can point into the middle of allocated blocks
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

▪ There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

▪ In Java, all pointers (i.e. references) point to the starting address of an
object structure – the start of an allocated block

17

header

ptr

Non-testable
Material

CSE351, Summer 2020L24: Memory Allocation III

Memory Leaks with GC

❖ Not because of forgotten free — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

❖ Sometimes nullifying a variable is not needed for correctness
but is for performance

❖ Example: Don’t leave big data structures you’re done with in a
static field

18

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Summer 2020L24: Memory Allocation III

Memory-Related Perils and Pitfalls in C

19

Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 20)

20

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

CSE351, Summer 2020L24: Memory Allocation III

Polling Question [Alloc III]

❖ Which error is this?
▪ http://pollev.com/pbjones

21

Dereferencing a non-pointerA.

Reading uninitialized MemoryB.

Returning/referencing a non-existent variableC.

Returning the wrong typeD.

int* foo() {

int val = 0;

. . .

return &val;

}

http://pollev.com/pbjones

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 22)

• N and M defined elsewhere (#define)

22

int **p;

p = (int **)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

p[i] = (int *)malloc(M * sizeof(int));

}

Error Prog stop Fix:
Type: Possible?

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 23)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

23

/* return y = Ax */

int *matvec(int **A, int *x) {

int *y = (int *)malloc(N*sizeof(int));

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 24)

❖ The classic scanf bug
▪ int scanf(const char *format, ...)

24

int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 25)

25

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 26)

26

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?

CSE351, Summer 2020L24: Memory Allocation III

Find That Bug! (Slide 27)

27

typedef struct L {

int val;

struct L *next;

} list;

void foo() {

list *head = (list *) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Summer 2020L24: Memory Allocation III

Dealing With Memory Bugs

❖ Conventional debugger (gdb)
▪ Good for finding bad pointer dereferences

▪ Hard to detect the other memory bugs

❖ Debugging malloc (UToronto CSRI malloc)
▪ Wrapper around conventional malloc

▪ Detects memory bugs at malloc and free boundaries
• Memory overwrites that corrupt heap structures

• Some instances of freeing blocks multiple times

• Memory leaks

▪ Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks

• Freeing block twice that has been reallocated in the interim

• Referencing freed blocks

28

Non-testable
Material

CSE351, Summer 2020L24: Memory Allocation III

Dealing With Memory Bugs (cont.)

❖ Some malloc implementations contain checking
code
▪ Linux glibc malloc: setenv MALLOC_CHECK_ 2

▪ FreeBSD: setenv MALLOC_OPTIONS AJR

❖ Binary translator: valgrind (Linux), Purify

▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Can detect all errors as debugging malloc

▪ Can also check each individual reference at runtime

• Bad pointers

• Overwriting

• Referencing outside of allocated block
29

Non-testable
Material

CSE351, Summer 2020L24: Memory Allocation III

What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are
impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible. Which
one?

30

Non-testable
Material

