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Administrivia
❖ Questions doc: https://tinyurl.com/CSE351-8-17

❖ hw19 is optional
▪ Can complete it at any point before the quarter ends

▪ Practice with virtual memory concepts

❖ hw22 due Wednesday (8/19) – 10:30am
▪ Helpful for Lab 5!

❖ hw23 due Monday (8/24) – 10:30am
▪ Won’t cover material until Wed this week

❖ Section Thursday is TA’s Choice & time for questions
▪ See cool applications of 351 material and ask your TAs questions!
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Administrivia
❖ Lab 5 due last day of quarter (Friday 8/21)
▪ Cutoff is Saturday 8/22 @11:59pm (only one late day can be 

used!)
▪ The most significant amount of C programming you will do in this 

class – combines lots of topics from this class: pointers, bit 
manipulation, structs, examining memory

▪ Understanding the concepts first and efficient debugging will save 
you lots of time

▪ Can be difficult to debug so please start early and use OH
▪ Light style grading
▪ hw22 will help get you started!

❖ Unit Summary 3 due last day of quarter (Friday 8/21)
▪ Cutoff is Saturday 8/22 @11:59pm (only one late day can be 

used!)
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Allocation Policy Tradeoffs

❖ Data structure of blocks on lists

▪ Implicit (free/allocated), explicit (free), segregated (many 
free lists) – others possible!

❖ Placement policy:  first-fit, next-fit, best-fit

▪ Throughput vs. amount of fragmentation

❖ When do we split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

❖ When do we coalesce free blocks?
▪ Immediate coalescing: Every time free is called

▪ Deferred coalescing: Defer coalescing until needed
• e.g.  when scanning free list for malloc or when external 

fragmentation reaches some threshold
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More Info on Allocators

❖ D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

▪ The classic reference on dynamic storage allocation

❖ Wilson et al, “Dynamic Storage Allocation: A Survey 
and Critical Review”, Proc. 1995 Int’l Workshop on 
Memory Management, Kinross, Scotland, Sept, 1995.

▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)
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Memory Allocation

❖ Dynamic memory allocation

▪ Introduction and goals

▪ Allocation and deallocation (free)

▪ Fragmentation

❖ Explicit allocation implementation

▪ Implicit free lists

▪ Explicit free lists (Lab 5)

▪ Segregated free lists

❖ Implicit deallocation:  garbage collection

❖ Common memory-related bugs in C
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Wouldn’t it be nice…

❖ If we never had to free memory?

❖ Do you free objects in Java?

▪ Reminder:  implicit allocator
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Garbage Collection (GC)

❖ Garbage collection:  automatic reclamation of heap-allocated 
storage – application never explicitly frees memory

❖ Common in implementations of functional languages, scripting 
languages, and modern object oriented languages:
▪ Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, 

JavaScript, Dart, Mathematica, MATLAB, many more…

❖ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage
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void foo() {

int* p = (int*) malloc(128);

return;  /* p block is now garbage! */

}

(Automatic Memory Management)
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Garbage Collection

❖ How does the memory allocator know when memory 
can be freed? 

▪ In general, we cannot know what is going to be used in the 
future since it depends on conditionals

▪ But, we can tell that certain blocks cannot be used if they 
are unreachable (via pointers in registers/stack/globals)

❖ Memory allocator needs to know what is a pointer 
and what is not – how can it do this?

▪ Sometimes with help from the compiler
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Memory as a Graph

❖ We view memory as a directed graph
▪ Each allocated heap block is a node in the graph

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called 
root nodes (e.g. registers, stack locations, global variables)
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A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable
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Garbage Collection

❖ Dynamic memory allocator can free blocks if there are 
no pointers to them

❖ How can it know what is a pointer and what is not?

❖ We’ll make some assumptions about pointers:

▪ Memory allocator can distinguish pointers from non-
pointers

▪ All pointers point to the start of a block in the heap

▪ Application cannot hide pointers 
(e.g. by coercing them to a long, and then back again)
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Classical GC Algorithms

❖ Mark-and-sweep collection (McCarthy, 1960)
▪ Does not move blocks (unless you also “compact”)

❖ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

❖ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

❖ Generational Collectors (Lieberman and Hewitt, 1983)

▪ Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

❖ For more information:
▪ Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of 

Automatic Memory Management, CRC Press, 2012.

▪ Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic 
Memory, John Wiley & Sons, 1996.
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Mark and Sweep Collecting

❖ Can build on top of malloc/free package
▪ Allocate using malloc until you “run out of space”

❖ When out of space:
▪ Use extra mark bit in the header of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

13

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT 
free list pointers
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Assumptions For a Simple Implementation

❖ Application can use functions to allocate memory:
▪ b=new(n) returns pointer, b, to new block with all locations cleared

▪ b[i] read location i of block b into register

▪ b[i]=v write v into location i of block b

❖ Each block will have a header word (accessed at b[-1])

❖ Functions used by the garbage collector:
▪ is_ptr(p) determines whether p is a pointer to a block

▪ length(p) returns length of block pointed to by p, not including
header

▪ get_roots() returns all the roots

14

Non-testable 
Material
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Mark

❖ Mark using depth-first traversal of the memory graph
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ptr mark(ptr p) {               // p: some word in a heap block

if (!is_ptr(p))    return;   // do nothing if not pointer

if (markBitSet(p)) return;   // check if already marked

setMarkBit(p);               // set the mark bit

for (i=0; i<length(p); i++)  // recursively call mark on

mark(p[i]);               //    all words in the block

return;

}      

Before mark

root

After mark Mark bit set

Non-testable 
Material
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Sweep

❖ Sweep using sizes in headers

16

ptr sweep(ptr p, ptr end) {       // ptrs to start & end of heap

while (p < end) {  // while not at end of heap

if (markBitSet(p))          // check if block is marked

clearMarkBit(p);         // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p);                 // free the block

p += length(p);             // adjust pointer to next block

}

}     

Non-testable 
Material

After mark Mark bit set

After sweep freefree
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Conservative Mark & Sweep in C

❖ Would mark & sweep work in C?
▪ is_ptr determines if a word is a pointer by checking if it points to an 

allocated block of memory

▪ But in C, pointers can point into the middle of allocated blocks 
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

▪ There are ways to solve/avoid this problem in C, but the resulting 
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable 
nodes might be incorrectly marked as reachable

▪ In Java, all pointers (i.e. references) point to the starting address of an 
object structure – the start of an allocated block

17

header

ptr

Non-testable 
Material
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Memory Leaks with GC

❖ Not because of forgotten free — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

❖ Sometimes nullifying a variable is not needed for correctness 
but is for performance

❖ Example: Don’t leave big data structures you’re done with in a 
static field
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Root nodes

Heap nodes

not reachable
(garbage)

reachable
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Memory-Related Perils and Pitfalls in C
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Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size
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Find That Bug!  (Slide 20)

20

char s[8];

int i;

gets(s);  /* reads "123456789" from stdin */ 

Error Prog stop Fix:
Type: Possible?
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Polling Question [Alloc III]

❖ Which error is this?
▪ http://pollev.com/pbjones
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Dereferencing a non-pointerA.

Reading uninitialized MemoryB.

Returning/referencing a non-existent variableC.

Returning the wrong typeD.

int* foo() {

int val = 0;

. . . 

return &val;

}  

http://pollev.com/pbjones
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Find That Bug!  (Slide 22)

• N and M defined elsewhere (#define)
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int **p;

p = (int **)malloc( N * sizeof(int) );

for (int i = 0; i < N; i++) {

p[i] = (int *)malloc( M * sizeof(int) );

}

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 23)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)
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/* return y = Ax */

int *matvec(int **A, int *x) { 

int *y = (int *)malloc( N*sizeof(int) );

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 24)

❖ The classic scanf bug
▪ int scanf(const char *format, ...)
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int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf
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Find That Bug!  (Slide 25)

25

x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 26)
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x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?
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Find That Bug!  (Slide 27)
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typedef struct L {

int val;

struct L *next;

} list;

void foo() {

list *head = (list *) malloc( sizeof(list) );

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?
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Dealing With Memory Bugs

❖ Conventional debugger (gdb)
▪ Good for finding bad pointer dereferences

▪ Hard to detect the other memory bugs

❖ Debugging malloc (UToronto CSRI malloc)
▪ Wrapper around conventional malloc

▪ Detects memory bugs at malloc and free boundaries
• Memory overwrites that corrupt heap structures

• Some instances of freeing blocks multiple times

• Memory leaks

▪ Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks

• Freeing block twice that has been reallocated in the interim

• Referencing freed blocks

28

Non-testable 
Material



CSE351, Summer 2020L24:  Memory Allocation III

Dealing With Memory Bugs (cont.)

❖ Some malloc implementations contain checking 
code
▪ Linux glibc malloc:  setenv MALLOC_CHECK_ 2 

▪ FreeBSD:  setenv MALLOC_OPTIONS AJR 

❖ Binary translator:  valgrind (Linux), Purify

▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Can detect all errors as debugging malloc

▪ Can also check each individual reference at runtime

• Bad pointers

• Overwriting

• Referencing outside of allocated block
29

Non-testable 
Material
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What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are 
impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible.  Which 
one?
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Non-testable 
Material


