
CSE351, Summer 2020L23: Memory Allocation II

Memory	Allocation	II
CSE	351	Summer	2020
Instructor:
Porter	Jones

Teaching	Assistants:
Amy	Xu
Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

http://xkcd.com/1909/

CSE351, Summer 2020L23: Memory Allocation II

End	of	Quarter	Approaching!
v You’ve	done	a	ton	of	work	and	learning	in	a	condensed	

schedule,	be	proud	of	that!

v End	of	the	quarter	can	get	hectic	(especially	in	the	summer)	
balancing	final	assignments/projects/exams/etc.
§ Could	help	to	take	15	minutes	to	take	a	deep	breath	and	organize	your	

last	week	of	the	quarter.

v Please	start	Lab	5/Unit	Summary	3	early	so	you	can	get	them	
out	of	the	way	and	focus	on	other	classes!
§ Also	allows	you	to	make	use	of	office	hours	and	the	message	board	if	you	

have	questions	or	get	stuck
§ Let	the	course	staff	know	if	situations	arise	that	are	making	it	difficult	to	

complete	your	work,	we	want	to	support	you	the	best	that	we	can!

2

CSE351, Summer 2020L23: Memory Allocation II

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-14

v hw19	is	optional
§ Can	complete	it	at	any	point	before	the	quarter	ends
§ Practice	with	virtual	memory	concepts

v hw21	due	Monday	(8/17)	– 10:30am
v hw22	due	Wednesday	(8/19)	– 10:30am

§ Helpful	for	Lab	5!

v hw23	due	Monday	(8/24)	– 10:30am
§ Won’t	cover	material	until	Mon/Wed	of	next	week	

3

CSE351, Summer 2020L23: Memory Allocation II

Administrivia
v Lab	5	due	last	day	of	quarter	(Friday	8/21)

§ Cutoff	is	Saturday	8/22	@11:59pm	(only	one	late	day	can	be	
used!)

§ The	most	significant	amount	of	C	programming	you	will	do	in	this	
class	– combines	lots	of	topics	from	this	class:	pointers,	bit	
manipulation,	structs,	examining	memory

§ Understanding	the	concepts	first and	efficient debugging	will	save	
you	lots	of	time

§ Can	be	difficult	to	debug	so	please	start	early	and	use	OH
§ Light	style	grading
§ hw22	will	help	get	you	started!

v Unit	Summary	3	due	last	day	of	quarter	(Friday	8/21)
§ Cutoff	is	Saturday	8/22	@11:59pm	(only	one	late	day	can	be	

used!)

4

CSE351, Summer 2020L23: Memory Allocation II

Keeping	Track	of	Free	Blocks
1) Implicit	free	list	using	length	– links	all blocks	using	math

§ No	actual	pointers,	and	must	check	each	block	if	allocated	or	free

2) Explicit	free	list among	only	the	free	blocks,	using	pointers

3) Segregated	free	list
§ Different	free	lists	for	different	size	“classes”

4) Blocks	sorted	by	size
§ Can	use	a	balanced	binary	tree	(e.g. red-black	tree)	with	pointers	within	

each	free	block,	and	the	length	used	as	a	key
5

40 32 1648

40 32 1648

=	8-byte	word	(free)

=	8-byte	word	(allocated)

CSE351, Summer 2020L23: Memory Allocation II

Implicit	Free	Lists
v For	each	block	we	need:		size,	is-allocated?

§ Could	store	using	two	words,	but	wasteful

v Standard	trick
§ If	blocks	are	aligned, some low-order	bits	of	size are	always	0
§ Use	lowest	bit	as	an	allocated/free	flag	(fine	as	long	as	aligning	to	𝐾>1)
§ When	reading	size,	must	remember	to	mask	out	this	bit!

6

Format	of	
allocated	and	

free	blocks:

a	=	1:		allocated	block		
a	=	0:		free	block

size:		block	size	(in	bytes)

payload:		application	data
(allocated	blocks	only)

size

8	bytes

payload

a

optional
padding

e.g. with	8-byte	alignment,	
possible	values	for	size:
00001000 =	8	bytes
00010000 =	16	bytes
00011000 =	24	bytes
.	.	.

If	x is	first	word (header):

x = size | a;

a = x & 1;

size = x & ~1;

size | a;

x & 1;

x & ~1;

CSE351, Summer 2020L23: Memory Allocation II

Implicit	Free	List	Example

v 16-byte	alignment	for	payload
§ May	require	initial	padding	(internal	fragmentation)
§ Note	size: padding	is	considered	part	of	previous block

v Special	one-word	marker	(0|1)	marks	end	of	list
§ Zero	size is	distinguishable	from	all	other	blocks

7

16|0 32|1 64|0 32|1 0|1

Free	word

Allocated	word

Allocated	word
unused

Start	of	heap

16	bytes	=	2	word	alignment

v Each	block	begins	with	header	(size	in	bytes	and	allocated	bit)
v Sequence	of	blocks	in	heap	(size|allocated):	

16|0,	32|1,	64|0,	32|1

CSE351, Summer 2020L23: Memory Allocation II

Implicit	List:		Finding	a	Free	Block
v First	fit

§ Search	list	from	beginning,	choose	first free	block	that	fits:

§ Can	take	time	linear	in	total	number	of	blocks
§ In	practice	can	cause	“splinters”	at	beginning	of	list

8

p = heap_start;
while ((p < end) && // not past end

((*p & 1) || // already allocated
(*p <= len))) { // too small

p = p + (*p & -2); // go to next block (UNSCALED +)
} // p points to selected block or end

(*p)	gets	the	block	
header

(*p	&	1)	extracts	the	
allocated bit	

(*p	&	-2)	extracts	
the	size

16|0 32|1 64|0 32|1 0|1

Free	word

Allocated	word

Allocated	word
unused

p = heap_start

CSE351, Summer 2020L23: Memory Allocation II

Implicit	List:		Finding	a	Free	Block
v Next	fit

§ Like	first-fit,	but	search	list	starting	where	previous	search	
finished

§ Should	often	be	faster	than	first-fit:	avoids	re-scanning	
unhelpful	blocks

§ Some	research	suggests	that	fragmentation	is	worse

v Best	fit
§ Search	the	list,	choose	the	best free	block:		large	enough	
AND	with	fewest	bytes	left	over

§ Keeps	fragments	small—usually	helps	fragmentation
§ Usually	worse	throughput

9

CSE351, Summer 2020L23: Memory Allocation II

Polling	Question	[Alloc II]
v Which	allocation	strategy	and	requests	

remove	external fragmentation	in	this	
Heap?		B3	was	the	last	fulfilled	request.
§ http://pollev.com/pbjones

10

Best-fit:
malloc(50),	malloc(50)

(A)

First-fit:
malloc(50),	malloc(30)

(B)

Next-fit:
malloc(30),	malloc(50)

(C)

Next-fit:
malloc(50),	malloc(30)

(D)
B1

B3

B210

10

50

50

50

30

Start	of	heap

payload
size

CSE351, Summer 2020L23: Memory Allocation II

Implicit	List:		Allocating	in	a	Free	Block

v Allocating	in	a	free	block:		splitting
§ Since	allocated	space	might	be	smaller	than	free	space,	we	
might	want	to	split	the	block

11

void split(ptr b, int bytes) { // bytes = desired block size
int newsize = ((bytes+15) >> 4) << 4; // round up to multiple of 16
int oldsize = *b; // why not mask out low bit?
*b = newsize; // initially unallocated
if (newsize < oldsize)

*(b+newsize) = oldsize - newsize; // set length in remaining
} // part of block (UNSCALED +)

Assume	ptr points	to	a	free block	and	has	unscaled	pointer	arithmetic

malloc(24):
ptr b = find(24+8)
split(b, 24+8)
allocate(b)

Free	word

Allocated	word

Newly-allocated
word

16|1 16|148|0

b

16|016|1 16|132|1

CSE351, Summer 2020L23: Memory Allocation II

Implicit	List:		Freeing	a	Block

v Simplest	implementation	just	clears	“allocated”	flag
§ void free(ptr p) {*(p-WORD) &= -2;}

§ But	can	lead	to	“false	fragmentation”

12

p

Oops!		There	is	enough	free	space,	but	
the	allocator	won’t	be	able	to	find	it

16|016|1 16|132|1
Free	word

Allocated	word

Block	of	interest
16|016|1 16|132|0

malloc(40)

free(p)

CSE351, Summer 2020L23: Memory Allocation II

Implicit	List:		Coalescing	with	Next
v Join	(coalesce) with	next	block	if	also	free

v How	do	we	coalesce	with	the	previous block?
13

void free(ptr p) { // p points to payload
ptr b = p – WORD; // b points to block header
*b &= -2; // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*next & 1) == 0) // if next block is not allocated,

*b += *next; // add its size to this block
}

logically	gone

16|016|1 16|132|1

16|016|1 16|148|0free(p)

p

Free	word

Allocated	word

Block	of	interest

CSE351, Summer 2020L23: Memory Allocation II

Implicit	List:		Bidirectional	Coalescing	
v Boundary	tags [Knuth73]

§ Replicate	header	at	“bottom”	(end)	of	free	blocks
§ Allows	us	to	traverse	backwards,	but	requires	extra	space
§ Important	and	general	technique!

14

Footer

32/0 32/0 32/1 32/1 48/0 32/148/0 32/1

Header size

payload	and
padding

a

size a

Format	of	
allocated	and	

free	blocks:

a	=	1:		allocated	block		
a	=	0:		free	block

size:		block	size	(in	bytes)

payload:		application	data
(allocated	blocks	only)

Boundary	tags

CSE351, Summer 2020L23: Memory Allocation II

Constant	Time	Coalescing

15

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block	being	freed

Case	1 Case	2 Case	3 Case	4

CSE351, Summer 2020L23: Memory Allocation II

Constant	Time	Coalescing
m1 1

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Case	1 m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Case	2

m1 0

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Case	3 m1 0

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Case	4

CSE351, Summer 2020L23: Memory Allocation II

Implicit	Free	List	Review	Questions

v What	is	the	block	header?		What	do	we	store	and	how?

v What	are	boundary	tags	and	why	do	we	need	them?

v When	we	coalesce	free	blocks,	how	many	neighboring	blocks	
do	we	need	to	check	on	either	side?		Why	is	this?

v If	I	want	to	check	the	size	of	the	𝑛-th block	forward	from	the	
current	block,	how	many	memory	accesses	do	I	make?

17

32/0 32/0 32/1 32/1 48/0 32/148/0 32/1

CSE351, Summer 2020L23: Memory Allocation II

Keeping	Track	of	Free	Blocks
1) Implicit	free	list	using	length	– links	all blocks	using	math

§ No	actual	pointers,	and	must	check	each	block	if	allocated	or	free

2) Explicit	free	list among	only	the	free	blocks,	using	pointers

3) Segregated	free	list
§ Different	free	lists	for	different	size	“classes”

4) Blocks	sorted	by	size
§ Can	use	a	balanced	binary	tree	(e.g. red-black	tree)	with	pointers	within	

each	free	block,	and	the	length	used	as	a	key
18

40 32 1648

40 32 1648

=	8-byte	word	(free)

=	8-byte	word	(allocated)

CSE351, Summer 2020L23: Memory Allocation II

Explicit	Free	Lists

v Use	list(s)	of	free blocks,	rather	than	implicit	list	of	all blocks
§ The	“next”	free	block	could	be	anywhere	in	the	heap

• So	we	need	to	store	next/previous	pointers,	not	just	sizes

§ Since	we	only	track	free	blocks,	so	we	can	use	“payload”	for	pointers
§ Still	need	boundary	tags	(header/footer)	for	coalescing

19

size a

size a

next

prev

Free block:

size

payload	and
padding

a

size a

Allocated block:

(same	as	implicit	free	list)

CSE351, Summer 2020L23: Memory Allocation II

Doubly-Linked	Lists

v Linear
§ Needs	head/root	pointer
§ First	node	prev pointer	is	NULL
§ Last	node	next	pointer	is	NULL
§ Good	for	first-fit,	best-fit

v Circular
§ Still	have	pointer	to	tell	you	which	node	to	start	with
§ No	NULL pointers	(term	condition	is	back	at	starting	point)
§ Good	for	next-fit,	best-fit

20

Root ⋅⋅⋅

Start ⋅⋅⋅

CSE351, Summer 2020L23: Memory Allocation II

Explicit	Free	Lists

v Logically:		doubly-linked	list

v Physically:		blocks	can	be	in	any	order

21

A B C

32 32 32 32 4848 3232 32 32

Forward	(next)	links

Back	(prev)	links

A B

C

CSE351, Summer 2020L23: Memory Allocation II

Allocating	From	Explicit	Free	Lists
Note: These	diagrams	are	not	very	specific	about	where inside	a	block a	pointer	points.	
In	reality	we	would	always	point	to	one	place	(e.g.	start/header	of	a	block).

22

Before

After	
(with	splitting)

= malloc(…)

CSE351, Summer 2020L23: Memory Allocation II

Allocating	From	Explicit	Free	Lists
Note: These	diagrams	are	not	very	specific	about	where inside	a	block a	pointer	points.	
In	reality	we	would	always	point	to	one	place	(e.g.	start/header	of	a	block).

23

Before

After	
(fully	allocated)

= malloc(…)

CSE351, Summer 2020L23: Memory Allocation II

Freeing	With	Explicit	Free	Lists

v Insertion	policy: Where	in	the	free	list	do	you	put	the	
newly	freed	block?

§ LIFO	(last-in-first-out)	policy
• Insert	freed	block	at	the	beginning	(head)	of	the	free	list
• Pro:		simple	and	constant	time
• Con:		studies	suggest	fragmentation	is	worse	than	the	alternative

§ Address-ordered	policy
• Insert	freed	blocks	so	that	free	list	blocks	are	always	in	address	order:

address(previous)	<	address(current)	<	address(next)
• Con:		requires	linear-time	search	
• Pro:		studies	suggest	fragmentation	is	better	than	the	alternative

24

CSE351, Summer 2020L23: Memory Allocation II

Coalescing	in	Explicit	Free	Lists

v Neighboring	free	blocks	are	already	part	of	the	free	
list
1) Remove	old	block	from	free	list
2) Create	new,	larger	coalesced	block
3) Add	new	block	to	free	list	(insertion	policy)

v How	do	we	tell	if	a	neighboring	block	if	free?
25

Block	being	freed
Allocated

Allocated

Case	1
Allocated

Free

Case	2
Free

Allocated

Case	3
Free

Free

Case	4

CSE351, Summer 2020L23: Memory Allocation II

Freeing	with	LIFO	Policy	(Case	1)

v Insert	the	freed	block	at	the	root	of	the	list

26

Before

After

Root

Boundary	tags	not	
shown,	but	don’t	
forget	about	them!

free()

Root

CSE351, Summer 2020L23: Memory Allocation II

Freeing	with	LIFO	Policy	(Case	2)

v Splice	successor block	out	of	list,	coalesce	both	memory	blocks,	
and	insert	the	new	block	at	the	root	of	the	list

27

Boundary	tags	not	
shown,	but	don’t	
forget	about	them!

Before

Root

free()

After

Root

CSE351, Summer 2020L23: Memory Allocation II

Freeing	with	LIFO	Policy	(Case	3)

v Splice	predecessor block	out	of	list,	coalesce	both	memory	
blocks,	and	insert	the	new	block	at	the	root	of	the	list

28

Boundary	tags	not	
shown,	but	don’t	
forget	about	them!

Before

Root

free()

After

Root

CSE351, Summer 2020L23: Memory Allocation II

Freeing	with	LIFO	Policy	(Case	4)

v Splice	predecessor and	successor blocks	out	of	list,	coalesce	all	
3	memory	blocks,	and	insert	the	new	block	at	the	root	of	the	
list

29

Boundary	tags	not	
shown,	but	don’t	
forget	about	them!

Before

Root

free()

After

Root

CSE351, Summer 2020L23: Memory Allocation II

Do	we	always	need	the	boundary	tags?

v Lab	5	suggests	no…

30

size a

size a

next

prev

Free block:

size

payload	and
padding

a

size a

Allocated block:

(same	as	implicit	free	list)

CSE351, Summer 2020L23: Memory Allocation II

Explicit	List	Summary
v Comparison	with	implicit	list:

§ Block	allocation	is	linear	time	in	number	of	free blocks	instead	of	all
blocks
• Much	faster	when	most	of	the	memory	is	full	

§ Slightly	more	complicated	allocate	and	free	since	we	need	to	splice	
blocks	in	and	out	of	the	list

§ Some	extra	space	for	the	links	(2	extra	pointers	needed	for	each	free	
block)
• Increases	minimum	block	size,	leading	to	more	internal	fragmentation

v Most	common	use	of	explicit	lists	is	in	conjunction	with	
segregated	free	lists
§ Keep	multiple	linked	lists	of	different	size	classes,	or	possibly	for	

different	types	of	objects

31

CSE351, Summer 2020L23: Memory Allocation II

The	following	slides	are	about	the	SegList Allocator,	for	
those	curious.		You	will	NOT	be	expected	to	know	this	
material.

32

CSE351, Summer 2020L23: Memory Allocation II

Keeping	Track	of	Free	Blocks
1) Implicit	free	list	using	length	– links	all blocks	using	math

§ No	actual	pointers,	and	must	check	each	block	if	allocated	or	free

2) Explicit	free	list among	only	the	free	blocks,	using	pointers

3) Segregated	free	list
§ Different	free	lists	for	different	size	“classes”

4) Blocks	sorted	by	size
§ Can	use	a	balanced	binary	tree	(e.g.	red-black	tree)	with	pointers	within	

each	free	block,	and	the	length	used	as	a	key
33

40 32 1648

40 32 1648

=	8-byte	box	(free)

=	8-byte	box	(allocated)

CSE351, Summer 2020L23: Memory Allocation II

Segregated	List	(SegList)	Allocators
v Each	size	class of	blocks	has	its	own	free	list
v Organized	as	an	array	of	free	lists

v Often	have	separate	classes	for	each	small	size
v For	larger	sizes:	One	class	for	each	two-power	size

34

32

48-64

80-inf

16

Size	class
(in	bytes)

CSE351, Summer 2020L23: Memory Allocation II

SegList Allocator

v Have	an	array	of	free	lists for	various	size	classes

v To	allocate a	block	of	size	𝑛:
§ Search	appropriate	free	list	for	block	of	size	𝑚 ≥ 𝑛
§ If	an	appropriate	block	is	found:

• [Optional]		Split	block	and	place	free	fragment	on	appropriate	list

§ If	no	block	is	found,	try	the	next	larger	class
• Repeat	until	block	is	found

v If	no	block	is	found:
§ Request	additional	heap	memory	from	OS	(using	sbrk)
§ Place	remainder	of	additional	heap	memory	as	a	single	free	
block	in	appropriate	size	class

35

CSE351, Summer 2020L23: Memory Allocation II

SegList Allocator

v Have	an	array	of	free	lists for	various	size	classes

v To	free a	block:
§ Mark	block	as	free
§ Coalesce	(if	needed)
§ Place	on	appropriate	class	list

36

CSE351, Summer 2020L23: Memory Allocation II

SegList Advantages

v Higher	throughput
§ Search	is	log	time	for	power-of-two	size	classes

v Better	memory	utilization
§ First-fit	search	of	seglist approximates	a	best-fit	search	of	
entire	heap

§ Extreme	case: Giving	every	block	its	own	size	class	is	no	
worse	than	best-fit	search	of	an	explicit	list

§ Don’t	need	to	use	space	for	block	size	for	the	fixed-size	
classes

37

CSE351, Summer 2020L23: Memory Allocation II

Freeing	with	LIFO	Policy	(Explicit	Free	List)

Predecessor	
Block

Successor
Block

Change in	
Nodes	in	
Free	List

Number	of	
Pointers	
Updated

Case	1 Allocated Allocated

Case	2 Allocated Free

Case	3 Free Allocated

Case	4 Free Free

