
CSE351, Summer 2020L22: Memory Allocation I

Memory Allocation I
CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

Adapted from
https://xkcd.com/1093/

https://xkcd.com/627/

CSE351, Summer 2020L22: Memory Allocation I

Administrivia
❖ Questions doc: https://tinyurl.com/CSE351-8-10

❖ hw19 is optional
▪ Can complete it at any point before the quarter ends

▪ Practice with virtual memory concepts

❖ hw20 due Friday (8/14) – 10:30am

❖ hw21 due Monday (8/17) – 10:30am

❖ Lab 4 due Tonight (8/12) – 11:59pm

❖ Lab 5 released later this afternoon (due 8/21)
▪ Should be able to start after section tomorrow

▪ Lecture Friday will help some too!

2

https://tinyurl.com/CSE351-8-10

CSE351, Summer 2020L22: Memory Allocation I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2020L22: Memory Allocation I

Multiple Ways to Store Program Data

❖ Static global data
▪ Fixed size at compile-time

▪ Entire lifetime of the program
(loaded from executable)

▪ Portion is read-only
(e.g. string literals)

❖ Stack-allocated data
▪ Local/temporary variables

• Can be dynamically sized (in some versions of C)

▪ Known lifetime (deallocated on return)

❖ Dynamic (heap) data
▪ Size known only at runtime (i.e. based on user-input)

▪ Lifetime known only at runtime (long-lived data structures)

4

int array[1024];

int* foo(int n) {

int tmp;

int local_array[n];

int* dyn =

(int*)malloc(n*sizeof(int));

return dyn;

}

CSE351, Summer 2020L22: Memory Allocation I

Memory Allocation

❖ Dynamic memory allocation

▪ Introduction and goals

▪ Allocation and deallocation (free)

▪ Fragmentation

❖ Explicit allocation implementation

▪ Implicit free lists

▪ Explicit free lists (Lab 5)

▪ Segregated free lists

❖ Implicit deallocation: garbage collection

❖ Common memory-related bugs in C

5

CSE351, Summer 2020L22: Memory Allocation I

Dynamic Memory Allocation

❖ Programmers use dynamic memory allocators to
acquire virtual memory at run time

▪ For data structures whose size
(or lifetime) is known only at runtime

▪ Manage the heap of a process’
virtual memory:

❖ Types of allocators

▪ Explicit allocator: programmer allocates and frees space
• Example: malloc and free in C

▪ Implicit allocator: programmer only allocates space (no free)
• Example: garbage collection in Java, Caml, and Lisp

6

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Summer 2020L22: Memory Allocation I

Dynamic Memory Allocation

❖ Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

▪ Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

▪ Application objects are typically smaller than pages, so the
allocator manages blocks within pages
• (Larger objects handled too;

ignored here)

7

Top of heap
(brk ptr)

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Summer 2020L22: Memory Allocation I

Allocating Memory in C

❖ Need to #include <stdlib.h>

❖ void* malloc(size_t size)

▪ Allocates a continuous block of size bytes of uninitialized memory

▪ Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

▪ Different blocks not necessarily adjacent

❖ Good practices:
▪ ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable

• void* is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

8

CSE351, Summer 2020L22: Memory Allocation I

Allocating Memory in C

❖ Need to #include <stdlib.h>

❖ void* malloc(size_t size)

▪ Allocates a continuous block of size bytes of uninitialized memory

▪ Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

▪ Different blocks not necessarily adjacent

❖ Related functions:
▪ void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block

▪ void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)

▪ void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap
9

CSE351, Summer 2020L22: Memory Allocation I

Freeing Memory in C

❖ Need to #include <stdlib.h>

❖ void free(void* p)

▪ Releases whole block pointed to by p to the pool of available memory

▪ Pointer p must be the address originally returned by m/c/realloc
(i.e. beginning of the block), otherwise system exception raised

▪ Don’t call free on a block that has already been released or on NULL

10

CSE351, Summer 2020L22: Memory Allocation I

Memory Allocation Example in C

11

void foo(int n, int m) {

int i, *p;

p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */

if (p == NULL) { /* check for allocation error */

perror("malloc");

exit(0);

}

for (i=0; i<n; i++) /* initialize int array */

p[i] = i;

/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));

if (p == NULL) { /* check for allocation error */

perror("realloc");

exit(0);

}

for (i=n; i < n+m; i++) /* initialize new spaces */

p[i] = i;

for (i=0; i<n+m; i++) /* print new array */

printf("%d\n", p[i]);

free(p); /* free p */
}

CSE351, Summer 2020L22: Memory Allocation I

Notation

❖ We will draw memory divided into words

▪ Each word is 64 bits = 8 bytes

▪ Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes)

▪ Book and old videos still use 4-byte word
• Holdover from 32-bit version of textbook 🙁

12

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes

CSE351, Summer 2020L22: Memory Allocation I

Allocation Example

13

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word

CSE351, Summer 2020L22: Memory Allocation I

Implementation Interface

❖ Applications
▪ Can issue arbitrary sequence of malloc and free requests

▪ Must never access memory not currently allocated

▪ Must never free memory not currently allocated
• Also must only use free with previously malloc’ed blocks

❖ Allocators

▪ Can’t control number or size of allocated blocks

▪ Must respond immediately to malloc

▪ Must allocate blocks from free memory

▪ Must align blocks so they satisfy all alignment requirements

▪ Can’t move the allocated blocks
14

CSE351, Summer 2020L22: Memory Allocation I

Performance Goals

❖ Goals: Given some sequence of malloc and free
requests 𝑅0, 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1, maximize throughput
and peak memory utilization

▪ These goals are often conflicting

1) Throughput

▪ Number of completed requests per unit time

▪ Example:
• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,

then throughput is 1,000 operations/second

15

CSE351, Summer 2020L22: Memory Allocation I

Performance Goals

❖ Definition: Aggregate payload 𝑃𝑘
▪ malloc(p) results in a block with a payload of p bytes

▪ After request 𝑅𝑘 has completed, the aggregate payload 𝑃𝑘
is the sum of currently allocated payloads

❖ Definition: Current heap size 𝐻𝑘
▪ Assume 𝐻𝑘 is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

▪ Defined as 𝑈𝑘 = (max
𝑖≤𝑘

𝑃𝑖)/𝐻𝑘 after 𝑘+1 requests

▪ Goal: maximize utilization for a sequence of requests

▪ Why is this hard? And what happens to throughput?
16

CSE351, Summer 2020L22: Memory Allocation I

Fragmentation

❖ Poor memory utilization is caused by fragmentation

▪ Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

▪ Two types: internal and external

❖ Recall: Fragmentation in structs
▪ Internal fragmentation was wasted space inside of the struct

(between fields) due to alignment

▪ External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

❖ Now referring to wasted space in the heap inside or
between allocated blocks

17

CSE351, Summer 2020L22: Memory Allocation I

Internal Fragmentation

❖ For a given block, internal fragmentation occurs if
payload is smaller than the block

❖ Causes:
▪ Padding for alignment purposes

▪ Overhead of maintaining heap data structures (inside block,
outside payload)

▪ Explicit policy decisions (e.g. return a big block to satisfy a
small request)

❖ Easy to measure because only depends on past
requests

18

payload
Internal
fragmentation

block

Internal
fragmentation

CSE351, Summer 2020L22: Memory Allocation I

External Fragmentation

❖ For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
▪ That is, the aggregate payload is non-continuous

▪ Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

❖ Don’t know what future requests will be
▪ Difficult to impossible to know if past placements will become

problematic
19

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

CSE351, Summer 2020L22: Memory Allocation I

Polling Question [Alloc I]

❖ Which of the following statements is FALSE?

▪ Vote at http://pollev.com/pbjones

A. Temporary arrays should not be allocated on the
Heap

B. malloc returns an address of a block that is
filled with garbage

C. Peak memory utilization is a measure of both
internal and external fragmentation

D. An allocation failure will cause your program to
stop

E. We’re lost…
20

http://pollev.com/pbjones

CSE351, Summer 2020L22: Memory Allocation I

Implementation Issues

❖ How do we know how much memory to free given
just a pointer?

❖ How do we keep track of the free blocks?

❖ How do we pick a block to use for allocation (when
many might fit)?

❖ What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

❖ How do we reinsert a freed block into the heap?

21

CSE351, Summer 2020L22: Memory Allocation I

Knowing How Much to Free

❖ Standard method

▪ Keep the length of a block in the word preceding the data
• This word is often called the header field or header

▪ Requires an extra word for every allocated block

22

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Summer 2020L22: Memory Allocation I

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
▪ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
▪ Different free lists for different size “classes”

4) Blocks sorted by size
▪ Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Summer 2020L22: Memory Allocation I

Implicit Free Lists

❖ For each block we need: size, is-allocated?

▪ Could store using two words, but wasteful

❖ Standard trick
▪ If blocks are aligned, some low-order bits of size are always 0

▪ Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)

▪ When reading size, must remember to mask out this bit!

24

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment,
possible values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
. . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

size | a;

x & 1;

x & ~1;

CSE351, Summer 2020L22: Memory Allocation I

Implicit Free List Example

❖ 16-byte alignment for payload
▪ May require initial padding (internal fragmentation)

▪ Note size: padding is considered part of previous block

❖ Special one-word marker (0|1) marks end of list
▪ Zero size is distinguishable from all other blocks

25

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

16 bytes = 2 word alignment

❖ Each block begins with header (size in bytes and allocated bit)

❖ Sequence of blocks in heap (size|allocated):
16|0, 32|1, 64|0, 32|1

CSE351, Summer 2020L22: Memory Allocation I

Implicit List: Finding a Free Block

❖ First fit
▪ Search list from beginning, choose first free block that fits:

▪ Can take time linear in total number of blocks

▪ In practice can cause “splinters” at beginning of list

26

p = heap_start;

while ((p < end) && // not past end

((*p & 1) || // already allocated

(*p <= len))) { // too small

p = p + (*p & -2); // go to next block (UNSCALED +)

} // p points to selected block or end

(*p) gets the block
header

(*p & 1) extracts the
allocated bit

(*p & -2) extracts
the size

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start

CSE351, Summer 2020L22: Memory Allocation I

Implicit List: Finding a Free Block

❖ Next fit
▪ Like first-fit, but search list starting where previous search

finished

▪ Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

▪ Some research suggests that fragmentation is worse

❖ Best fit
▪ Search the list, choose the best free block: large enough

AND with fewest bytes left over

▪ Keeps fragments small—usually helps fragmentation

▪ Usually worse throughput

27

