Memory Allocation |

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

Adapted from
https://xkcd.com/1093/

WHEN Wil WE FORGET?

BASED ON S (ENSUs BUREARV
NATIONAL FOPULATION [ROTECTIONS

PSAIMING WE DON'T REMEMBER CULTURAL
EVENTS FROM BEFORE AGE. SR 6

Br THIS | THE MPJORTY OF AMERICANS
YEAR: | WAL BE TOOYOUNG TO REMEMBER:
2006 | RETURN OF THE JEDY RELERSE
2017 | THE FiRST APRLE MACINTESH
2018 | New (oxE
20 | CHAULEMGER
2020 | CHERNOBYL
22! | BAK MONDAY
2022 | THE REAGAN PRESIDENGY
2075 | THE BERUN WAL
2024 | HAMMERTME
2025 | THE SOVIET UNION
20% | THE LA RICTS
2027 | [ORENA BOBRITT
2028 | THE FORREST GUMP RELERSE.
2029 | THE RWANDAN GENOCIDE
2030 | 07 SIMPSON'S TRIAL
238 | ATIME BEFORE FACEROOK,
2039 | WHY's Z LovE THE s
2040 | HURRICANE. KATRINA
2041 | THE RLANET Pwro
2042 | THE FIRST iFHONE

so | ANYTHNG DYBARRASSING
YOU DO ToDAY

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Administrivia 2
+ Questions doc: https://tinvurl.com/CSE351-8-‘x

, , NIV =
< hw19 is optional (o cres

N\ . .
= Can complete it at any point before the quarter ends

= Practice with virtual memory concepts

% hw20 due Friday (8/14) — 10:30am
% hw21 due Monday (8/17) — 10:30am

+ Lab 4 due Tonight (8/12) — 11:59pm ok 06 €
+ Lab 5 released later this afternoon (due 8/21) &{17,@u S

= Should be able to start after section tomorrow
= |ecture Friday will help some too!

\{w‘m} M/\Qv-'\')'w'f') s &,zw

Uit §an

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs

~ & Memory & caches

Assembly get_mpg: Processes

_ pushg S$rbp
Ianguage' movq srsp, Srbp

Virtual memory
Memory allocation

pPopq Srbp Java vs. C
ret i
\ 4
Machine 0111010000011000
code: 100011010000010000000010
. 1000100111000010
110000011111101000011111

Computer
system:

W UNIVERSITY of WASHINGTON

L22: Memory Allocation |

Multiple Ways to Store Program Data

+ Static global data /\9

" Fixed size at compile-time

= Entire lifetime of the program

(loaded from executable)

= Portion is read-only
(e.g. string literals)

Stack-allocated data

" Local/temporary variables

int array([1024];
int* foo(int n) {
int tmp;

int local arrayl(n];

int* dyn =

(int*)malloc (n*sizeof (int)) ;
return dyn; 57<}\~
}

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

<+ Dynamic (heap) data

= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

CSE351, Summer 2020

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Memory Allocation

Dynamic memory allocation

" Introduction and goals

= Allocation and deallocation (free)

" Fragmentation

Explicit allocation implementation

= Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

Implicit deallocation: garbage collection

Common memory-related bugs in C

W UNIVERSITY of WASHINGTON L22: Memory Allocation |

Dynamic Memory Allocation

+ Programmers use dynamic memory a
acquire virtual memory at run time

= For data structures whose size
(or lifetime) is known only at runtime/

" Manage the heap of a process’
virtual memory:

+ Types of allocators

CSE351, Summer 2020

locators to

User stack

s ¥

Heap (viamalloc)
e o)

Uninitialized data (. bss)

Initialized data (. data)

Program text (. text)

Le_a.\,\i)&d':"\i

= Explicit allocator: programmer allocates and frees space

F—f .
- Example: mallocand freeinC

= Implicit allocator: programmer only allocates space (no free)
f —

L

- Example: garbage collection in Java, Caml, and Lisp

new QYjeccly;

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Dynamic Memory Allocation o

+ Allocator organlzes heap as a collection of variable-

C/\.W.&V—»

sized blocks, which arsr elther allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack
ifnored here) f ‘
«— Top of heap

Heap (viamalloc) (brk ptr)

Uninitialized data (.bss)
Initialized data (. data)
Program text (. text)

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Allocating Memory in C

< Q,s
+ Needto #include <stdlib.h> "V
?H Yo OW\ol At spale /

+ void* malloc(size t size)

= Allocates a continuous block of size bytes of uninitialized memory

. . . M . .
= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request - -~ a5 cobl
c

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

: CES ‘Yo e
» Good practices: , \oeax® dect9 \ﬂ,wok;/”(“g 5

N 5 v\,é’g

" ptr = (int*) mallocgn*sizeof(int));

sizeof makes code more portable
s s

- void*is implicitlfyfa_st into anyﬁinter type; explicit typecast will help you
catch coding errors when pointer types don’t match

w UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020
Ubex &> allocaker £=> O
) ° oC \o("
Allocating MemoryinC 5

Needto #include <stdlib.h>

void* malloc (size_t size)
= Allocates a continuous block of size bytes of uninitialized memory

N N —
= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
- Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+ Related functions:

" void* calloc(size t nitems, size t size)
o~ —_ —_—
- “Zeros out” allocated block

" void* realloc (void* ptr, size t size)
———— —
- Changes the size of a previously allocated block (if possible)

" void* sbrk(intptr t increment) 9‘6“’%([

- Used internally by allocators to grow or shrink the heap

=

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

s\Woe otoC

7 s
C

Freeing Memory in

Needto #include <stdlib.h>

» vold free (void* p)

= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned bym/c/realloc
(i.e. beginning of the block), otherwise system exception raised

"= Don’t call free on a block that has already been released or on NULL

S e
AN -

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Memory Allocation Example in C

void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof (int)); /* allocate block of nints */
TF (p == NULL) { / * check for allocation error */
perror ("malloc") ;
exit (0) ;
}
for (
pli

1y

=g aldag s /* initialize int array */
] =

/* add space for m ints to end of p block */
p = (int*) realloc(p, (ntm) *sizeof (int));
if (p == NULL) { /* check for allocation error */
perror ("realloc");
exit (0) ;
}

for (i=n; i < n+m; i++) /* initialize new spaces */
pli] = 1;
; i<n+m; i++) /* print new array */
("sd\n", pl[i]);

/* freep */
-

© A\IM"‘-J") LL&V‘"

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

=1 word = 8 bytes

Notation - —

+» We will draw memory divided into words

= Each word is 64 bits = 8 bytes

= Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes) (§ acc

" Book and old videos still use 4-byte word &&=

M :
° 1 1 o0 ‘k‘\' ks
Holdover from 32-bit version of textbook ¢ ¥ e W‘Q

\ v J ; ,_J
Allocated block Free block

(4 words) (3words) }Free word
=

Allocated word

~—

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

= 8-byte word

Allocation Example

malloc (32)
A~ ~————

malloc (40)

malloc (48)

malloc (16)

LV S S o)

h\lscw\""r requests
motl SO W/l Kk

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Implementation Interface

<+ Applications

= Canissue arbitrary sequence of malloc and free requests
T~ — L —

" Must never access memory not currently allocated

= Must never free memory not currently allocated

—

« Also must only use free with previously malloc’ed blocks

« Allocators
N—

" Can’t control number or size of allocated blocks
. . ‘I fb"rw/lﬂ“-?w)
Must respond immediately tomalloc (car

C
Must allocate blocks from free memory ((con € oued \op)

Must align blocks so they satisfy all alignment requirements
T
Can’t move the allocated blocks Qe Eeagmentai’ ™ M"’*““‘i/
14

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Performance Goals
\/\/\/\——

+» @oals: Given some sequence of malloc and free
requests Ry, R4, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization i B

——
" These goals are often conflicting
\/\/"—\

aw Ledt L&an e
1) Throughput L‘;MP\«:H requedsy S

= Number of completed requests per unit time

= Example:

- If 5,000 malloc callsand 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

QI I

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Performance Goals

+ Definition: Aggregate payload P,
" malloc (p)rresults in a block with a payload of p bytes

= After request Ry has completed, the aggregate payload P,
is the sum of currently allocated payloads

l{’ Definition: Current heap size Hy,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

o
09 e CLicieny W&
AL C/‘__J\

2) Peak Memory Utilization

= Defined as U;, = (m<a}cx P;)/H,, after k+1 requests
ls

" Goal: maximize utilization for a sequence of requests
" Why is this hard? And what happens to throughput?

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

= Two types: internal and external
P e -/L_-———\
+ Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragment.gt—ion was wasted space between struct

instances (e.g. in an array) due to alignment

w“

N

+» Now referring to wasted space in the heap inside or
between allocated blocks -

- ~ (D U Wy

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Internal Fragmentation

+» For a given block, internal fragmentation occurs if

payload is smaller than the block

block
A

- N |
Interna
—_— payload T fragmentation

———a

Internal
fragmentation

+» ‘Causes:
= Padding for alignment purposes
T m—

= QOverhead of rn’z:\Tntainiﬁ'gTweap data structures (inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satA'sfy a
. : ec’'t-glE~c
small request) faster Fheqhent = naa- Had @EIREe TS

S;,D(ea-c;__,,_q'.,,a_s-l—
+ Easy to measure because only depends on past
requests

-

=

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

= 8-byte word

External Fragmentation

« For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
" Thatis, the aggregate payload is non-continuous

= (Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

malloc (32)

malloc (40)

L Nomied ! |
malloc (48) "‘u)

- \
free (p2) w@
VKU Lot Ven{_ e
r(‘;gl;al‘eﬁ%ﬂlc) h['ap row?) cb Lt

= malloc(48) Oh no! en now?) g (cee Spete
TndeinX Conmentando ™ NoSingke Wiock 'vio-g

Don’t know what future requests will be H 3 oyteS

= Difficult to impossible to know if past placements will become
problematic

W UNIVERSITY of WASHINGTON L22: Memory Allocation |

s
Polling Question [Alloc 1]

+» Which of the following statements is FALSE?
= \/ote at http://pollev.com/pbjones

—

| A. Temporary arrays should not be allocated on the
Ghoald Ube thie Sl cF

Heap (. Lot .\,wporp)nﬁ Vura\p\-cs\

B. malloc returns an ad_dr?ss of a b!oclf_ that is
filled with garbage & ¥ 02, w '~ =4

— e weren 3
| €. Peak memory utilization is a measure of both

internal and ext ragmentation

? D. An allocation failure will cause your program to
~— stop “ULL. 6 e Tned \owk p oA Condinme

E. We're lost...

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Implementation Issues

+» How do we know how mWy to free given

just a pointer?

+» How do we keep track of the free blocks?

[)

+» How do we pick a block to use for allocation (when
many might fit)?

» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

= 8-byte word (free)

Knowing How Much to Free - 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
« This wor-om often called the header field or header

= Requires an extra word for every allocated block
AN

po.: N ‘) v

BIO_ e -

malloc (32) 40
(7 e] N/,
<A block size data
Yo ¢

free (p0)
W

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

= 8-byte word (free)

Keeping Track of Free Blocks - 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free

— —
- ~ -
el ' 92 A

40 32 48 16
QA 5122 5o geA 4o next Lloc &

2) Explicit free list among only the free blocks, using pointers
oarel L\Sv\x-e_& ANy

Qa\‘,\::)"&‘, \G\o N ot Ccee (o \f~$!. >
40 L 7 32

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within
each free block, and the length used as a key

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020
addc (4 multiple ob- & (04| 00D)

e.g. with 8-byte alignment,

ImpliCit Free LiSth\o-q*-"') | &°F possible,values for size:

{/ 00001000 = 8 bytes
Q_/ . 00010000 = 16 bytes
+» For each block we need: size, is-allocated? | 00011000 = 24 bytes

® Could store using two words, but wasteful SRR

Standard trick
= If blocks are aligned, some low-order bits of size are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

= When reading size, must remember to mask out this bit!

2 byt a\ocader 3~ Llck | PooD... | DO
ytes

A
'z N\

Format of ala=1: allocated block If x is first word (header):
allocated and a =0: free block

free blocks: x = size | a;
payload size: block size (in bytes) [puémes atlocsbed it
a =x & 1;

. . . H—\
payload: application data o a—md‘gw""‘?(_ M(?‘«.A\o “

C O

optional (allocated blocks only) size = x & ~1;
padding

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

{((coves 1:(-1&»3 (o

Implicit Free List Example “

Each block begins with header (size in bytes and allocated bit)

» Sequence of blocks in heap (size|allocated):
16]0,32|1,64|0, 32]|1

Start of heap
Free word

a0 B2/ Ol Allocated word

. Allocated word
unused

16 bytes = 2 word alignment

16-byte alignment for payload

= May require initial padding (internal fragmentation)
" Note size: paddingis considered part of previous block

» Special one-word marker (0| 1) marks end of list
= Zero size is distinguishable from all other blocks

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

(*p) gets the block
° ° ° ° ° header
Implicit List: Finding a Free Block |¢rauexractsthe
allocated bit

. . (*p & -2) extracts
< F/rStflt the size

= Search list from beginning, choose first free block that fits:

P = heap start;
while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) { // too small
p=p+t (v & -2); // go to next block (UNSCALED +)
} // p poilnts to selected block or end

= Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

p = heap start

Free word

Allocated word

Allocated word
unused

W UNIVERSITY of WASHINGTON L22: Memory Allocation | CSE351, Summer 2020

Implicit List: Finding a Free Block

+» Next fit

= Like first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

+ Best fit
= Search the list, choose the best free block: large enough
AND with fewest bytes left over
= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

