
CSE351, Summer 2020L21: Virtual Memory II

Virtual	Memory	II
CSE	351	Summer	2020

Instructor:
Porter	Jones

Teaching	Assistants:
Amy	Xu
Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

https://xkcd.com/1495/

CSE351, Summer 2020L21: Virtual Memory II

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-10

v hw19	is	optional
§ Can	complete	it	at	any	point	before	the	quarter	ends
§ Practice	with	virtual	memory	concepts

v hw20	due	Friday	(8/14)	– 10:30am

v Lab	4	due	Wednesday	(8/12) – 11:59pm	
§ All	about	caches!

2

CSE351, Summer 2020L21: Virtual Memory II

Virtual	Memory	(VM)

v Overview	and	motivation
v VM	as	a	tool	for	caching
v Address	translation
v VM	as	a	tool	for	memory	management
v VM	as	a	tool	for	memory	protection

3

CSE351, Summer 2020L21: Virtual Memory II

Address	Translation

4

0:
1:

M-1:

Main	memory

MMU

2:
3:
4:
5:
6:
7:

Physical	address
(PA)

Data	(int/float)

8: ...

CPU

Virtual	address
(VA)

CPU	Chip

0x40x4100

Memory	Management	Unit

How	do	we	perform	the	virtual	
→ physical	address	translation?

CSE351, Summer 2020L21: Virtual Memory II

Address	Translation:		Page	Tables

v CPU-generated	address	can	be	split	into:

§ Request	is	Virtual	Address	(VA),	want	Physical	Address	(PA)
§ Note	that	Physical	Offset	=	Virtual	Offset		(page-aligned)

v Use	lookup	table	that	we	call	the	page	table (PT)
§ Replace	Virtual	Page	Number	(VPN)	for	Physical	Page	
Number	(PPN)	to	generate	Physical	Address

§ Index	PT	using	VPN:		page	table	entry	(PTE)	stores	the	PPN	
plus	management	bits	(e.g. Valid,	Dirty,	access	rights)

§ Has	an	entry	for	every virtual	page

5

Virtual	Page	Number Page	Offset𝑛-bit	address:

CSE351, Summer 2020L21: Virtual Memory II

Page	Table	Diagram

v Page	tables	stored	in	physical	memory
§ Too	big	to	fit	elsewhere	– managed	by	MMU	&	OS

v How	many	page	tables	in	the	system?
§ One	per	process

6

Page	Table
(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk	Addr
PTE	0:				0

PTE	7:				7

PTE	1:				1
PTE	2:				2
PTE	3:				3
PTE	4:				4
PTE	5:				5
PTE	6:				6

......

Virtual	memory
(DRAM/disk)

VP	6

VP	3

Virtual	page	#

Physical	memory
(DRAM)

PP	0

PP	3

PP	2

PP	1

VP	1

VP	2

VP	7

VP	4

Physical	page	#

CSE351, Summer 2020L21: Virtual Memory II

CPU

Page	Table	Address	Translation

7

Virtual	page	number	(VPN) Virtual	page	offset	(VPO)

Physical	page	number	(PPN) Physical	page	offset	(PPO)

Virtual	address	(VA)

Physical	address	(PA)

Valid PPN

Page	table	
base	register

(PTBR)

Page	table	Page	table	address	
for	process

Valid	bit	=	0:
page	not	in	memory

(page	fault)

In	most	cases,	the	MMU	can	
perform	this	translation	

without	software	assistance

CSE351, Summer 2020L21: Virtual Memory II

Polling	Question	[VM	II]

v How	many	bits	wide	are	the	following	fields?
§ 16	KiB	pages
§ 48-bit	virtual	addresses
§ 16	GiB physical	memory
§ Vote	at:		http://pollev.com/pbjones

8

34 24(A)
32 18(B)
30 20(C)
34 20(D)

VPN PPN

CSE351, Summer 2020L21: Virtual Memory II

Page	Hit

v Page	hit: VM	reference	is	in	physical	memory

9

Page	Table	(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk	Addr
PTE	0

PTE	7
......

Virtual	address

Example: Page	size	=	4	KiB

0x00740bVirtual	Addr:

VPN: PPN:

Physical	Addr:

Physical	memory
(DRAM)

PP	0

PP	3

VP	1
VP	2
VP	7
VP	4

Virtual	memory
(DRAM/disk)

VP	6

VP	3

CSE351, Summer 2020L21: Virtual Memory II

Page	Fault

v Page	fault: VM	reference	is	NOT in	physical	memory	

10

Page	Table	(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk	Addr
PTE	0

PTE	7
......

Physical	memory
(DRAM)

PP	0

PP	3

VP	1
VP	2
VP	7
VP	4

Virtual	memory
(DRAM/disk)

VP	6

VP	3

Virtual	address

Example: Page	size	=	4	KiB
Provide	a	virtual	address	request	(in	hex)	that	
results	in this	particular	page	fault:

Virtual	Addr:

CSE351, Summer 2020L21: Virtual Memory II

Reminder:	Page	Fault	Exception
v User	writes	to	memory	location
v That	portion	(page)	of	user’s	memory	

is	currently	on	disk

v Page	fault	handler	must	load	page	into	physical	memory
v Returns	to	faulting	instruction:		mov is	executed	again!

§ Successful	on	second	try
11

int a[1000];
int main () {

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	code OS	Kernel	code

exception:	page	fault
Create	page	and	
load	into	memoryreturns

movl
handle_page_fault:

CSE351, Summer 2020L21: Virtual Memory II

Handling	a	Page	Fault
v Page	miss	causes	page	fault	(an	exception)

12

Page	Table	(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk	Addr
PTE	0

PTE	7
......

Physical	memory
(DRAM)

PP	0

PP	3

VP	1
VP	2
VP	7
VP	4

Virtual	memory
(DRAM/disk)

VP	6

VP	3

Virtual	address

CSE351, Summer 2020L21: Virtual Memory II

Handling	a	Page	Fault
v Page	miss	causes	page	fault	(an	exception)
v Page	fault	handler	selects	a	victim to	be	evicted	(here	VP	4)

13

Page	Table	(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk	Addr
PTE	0

PTE	7
......

Physical	memory
(DRAM)

PP	0

PP	3

VP	1
VP	2
VP	7
VP	4

Virtual	memory
(DRAM/disk)

VP	6

VP	3

Virtual	address

CSE351, Summer 2020L21: Virtual Memory II

Handling	a	Page	Fault
v Page	miss	causes	page	fault	(an	exception)
v Page	fault	handler	selects	a	victim to	be	evicted	(here	VP	4)

14

Page	Table	(DRAM)

null

null

0
1

0

0
1
1
1
0

Valid PPN/Disk	Addr
PTE	0

PTE	7
......

Physical	memory
(DRAM)

PP	0

PP	3

VP	1
VP	2
VP	7
VP	3

Virtual	memory
(DRAM/disk)

VP	4
VP	6

Virtual	address

CSE351, Summer 2020L21: Virtual Memory II

Handling	a	Page	Fault
v Page	miss	causes	page	fault	(an	exception)
v Page	fault	handler	selects	a	victim to	be	evicted	(here	VP	4)
v Offending	instruction	is	restarted:		page	hit!

15

Page	Table	(DRAM)

null

null

0
1

0

0
1
1
1
0

Valid PPN/Disk	Addr
PTE	0

PTE	7
......

Physical	memory
(DRAM)

PP	0

PP	3

VP	1
VP	2
VP	7
VP	3

Virtual	memory
(DRAM/disk)

VP	4
VP	6

Virtual	address

CSE351, Summer 2020L21: Virtual Memory II

Virtual	Memory	(VM)

v Overview	and	motivation
v VM	as	a	tool	for	caching
v Address	translation
v VM	as	a	tool	for	memory	management
v VM	as	a	tool	for	memory	protection

16

CSE351, Summer 2020L21: Virtual Memory II

VM	for	Managing	Multiple	Processes
v Key	abstraction:	each	process	has	its	own	virtual	address	space

§ It	can	view	memory	as	a	simple	linear	array

v With	virtual	memory,	this	simple	linear	virtual	address	space	
need	not	be	contiguous	in	physical	memory
§ Process	needs	to	store	data	in	another	VP?	Just	map	it	to	any PP!

17

Virtual	
Address	

Space	for	
Process	1:

Physical	
Address	
Space	
(DRAM)

0

N-1
(e.g.,	read-only	
library	code)

Virtual	
Address	

Space	for	
Process	2:

VP	1
VP	2
...

0

N-1

VP	1
VP	2
...

PP	2

PP	6

PP	8

...

0

M-1

Address	
translation

CSE351, Summer 2020L21: Virtual Memory II

Simplifying	Linking	and	Loading
v Linking	

§ Each	program	has	similar	virtual	
address	space

§ Code,	Data,	and	Heap	always	
start	at	the	same	addresses

v Loading	
§ execve allocates	virtual	pages	

for	.text and	.data sections	
&	creates	PTEs	marked	as	invalid

§ The	.text and	.data sections	
are	copied,	page	by	page,	on	
demand	by	the	virtual	memory	
system

18

Kernel	virtual	memory

Memory-mapped	region	for
shared	libraries

Run-time	heap
(created	by	malloc)

User	stack
(created	at	runtime)

Unused
0

%rsp
(stack	
pointer)

Memory
invisible	to
user	code

brk

0x400000

Read/write	segment
(.data,	.bss)

Read-only	segment
(.init,	.text,	.rodata)

Loaded	
from	the	
executable	
file

CSE351, Summer 2020L21: Virtual Memory II

VM	for	Protection	and	Sharing
v The	mapping	of	VPs	to	PPs	provides	a	simple	mechanism	to	

protectmemory	and	to	sharememory	between	processes
§ Sharing: map	virtual	pages	in	separate	address	spaces	to	the	same	

physical	page	(here:	PP	6)
§ Protection: process	can’t	access	physical	pages	to	which	none	of	its	

virtual	pages	are	mapped	(here:		Process	2	can’t	access	PP	2)

19

Virtual	
Address	

Space	for	
Process	1:

Physical	
Address	
Space	
(DRAM)

0

N-1
(e.g.,	read-only	
library	code)

Virtual	
Address	

Space	for	
Process	2:

VP	1
VP	2
...

0

N-1

VP	1
VP	2
...

PP	2

PP	6

PP	8

...

0

M-1

Address	
translation

CSE351, Summer 2020L21: Virtual Memory II

Memory	Protection	Within	Process

v VM	implements	read/write/execute	permissions
§ Extend	page	table	entries	with	permission	bits
§ MMU	checks	these	permission	bits	on	every	memory	access

• If	violated,	raises	exception	and	OS	sends	SIGSEGV	signal	to	process
(segmentation	fault)

20

•••

Physical	
Address	Space

PP	2

PP	4

PP	6

PP	8
PP	9

PP	11

Process	i: PPNWRITE EXEC
PP	6No No
PP	4No Yes
PP	2Yes No

READ
Yes
Yes
Yes

VP	0:
VP	1:
VP	2:

Yes
Yes
Yes

Valid

Process	j: WRITE EXEC
PP	9Yes No
PP	6No No
PP	11Yes No

READ
Yes
Yes
Yes

VP	0:
VP	1:
VP	2:

Yes
Yes
Yes

Valid PPN

CSE351, Summer 2020L21: Virtual Memory II

Review	Question

v What	should	the	permission	bits	be	for	pages	from	
the	following	sections	of	virtual	memory?

21

Section Read Write Execute

Stack

Heap

Static	Data

Literals

Instructions

CSE351, Summer 2020L21: Virtual Memory II

Address	Translation:		Page	Hit

22

1) Processor	sends	virtual	address	to	MMU	(memory	management	unit)

2-3)		MMU	fetches	PTE	from	page	table	in	cache/memory
(Uses	PTBR	to	find	beginning	of	page	table	for	current	process)

4) MMU	sends	physical	address to	cache/memory	requesting	data

5) Cache/memory	sends	data	to	processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

VA	=	Virtual	Address PTEA	=	Page	Table	Entry	Address PTE=	Page	Table	Entry	
PA	=	Physical	Address Data	=	Contents	of	memory	stored	at	VA	originally	requested	by	CPU	

CSE351, Summer 2020L21: Virtual Memory II

Address	Translation:		Page	Fault

23

1) Processor	sends	virtual	address	to	MMU	
2-3) MMU	fetches	PTE	from	page	table	in	cache/memory
4) Valid	bit	is	zero,	so	MMU	triggers	page	fault	exception
5) Handler	identifies	victim	(and,	if	dirty,	pages	it	out	to	disk)
6) Handler	pages	in	new	page	and	updates	PTE	in	memory
7) Handler	returns	to	original	process,	restarting	faulting	instruction

MMU Cache/
Memory

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

Disk

Page	fault	handler

Victim	page

New	page

Exception

6

7

CSE351, Summer 2020L21: Virtual Memory II

Hmm…	Translation	Sounds	Slow

v The	MMU	accesses	memory	twice:	once	to	get	the	
PTE	for	translation,	and	then	again	for	the	actual	
memory	request
§ The	PTEs	may be	cached	in	L1	like	any	other	memory	word

• But	they	may	be	evicted	by	other	data	references

• And	a	hit	in	the	L1	cache	still	requires	1-3	cycles

v What	can	we	do	to	make	this	faster?
§ Solution:		add	another	cache!		🎉

24

CSE351, Summer 2020L21: Virtual Memory II

Speeding	up	Translation	with	a	TLB

v Translation	Lookaside	Buffer (TLB):
§ Small	hardware	cache	in	MMU

• Split	VPN	into	TLB	Tag and	TLB	Index based	on	#	of	sets	in	TLB

§ Maps	virtual	page	numbers	to	physical	page	numbers
§ Stores	page	table	entries for	a	small	number	of	pages

• Modern	Intel	processors	have	128	or	256	entries	in	TLB

§ Much	faster	than	a	page	table	lookup	in	cache/memory

25

Virtual	Page	Number Page	offset

TLBT TLBI

TLB
PTETLBT
PTE
PTE
PTE

Set

0

1

V
TLBTV
TLBTV

V TLBT

CSE351, Summer 2020L21: Virtual Memory II

TLB	Hit

v A	TLB	hit	eliminates	a	memory	access!

26

MMU Cache/
Memory

PA

Data

CPU VA

CPU	Chip

PTE

1

2

4

5

TLB

VPN 3

TLB
PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Summer 2020L21: Virtual Memory II

TLB	Miss

v A	TLB	miss	incurs	an	additional	memory	access	(the	PTE)
§ Fortunately,	TLB	misses	are	rare

27

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

TLB
PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Summer 2020L21: Virtual Memory II

Fetching	Data	on	a	Memory	Read

1) Check	TLB
§ Input:		VPN,		Output:		PPN
§ TLB	Hit: Fetch	translation,	return	PPN
§ TLB	Miss: Check	page	table	(in	memory)

• Page	Table	Hit: Load	page	table	entry	into	TLB
• Page	Fault: Fetch	page	from	disk	to	memory,	update	
corresponding	page	table	entry,	then	load	entry	into	TLB

2) Check	cache
§ Input:		physical	address,		Output:		data
§ Cache	Hit: Return	data	value	to	processor
§ Cache	Miss: Fetch	data	value	from	memory,	store	it	in	
cache,	return	it	to	processor

28

CSE351, Summer 2020L21: Virtual Memory II

Address	Translation

29

Virtual	Address

TLB	Lookup

Check	the
Page	Table

Update	
TLB

Page	Fault
(OS	loads	page)

Protection
Check

Physical
Address

TLB	Miss TLB	Hit

Page	not
in	Mem

Access
Denied

Access	
Permitted

Protection
Fault

SIGSEGV

Page	
in	Mem

Check	cacheFind	in	Disk Find	in	Mem
HitMiss

CSE351, Summer 2020L21: Virtual Memory II

Address	Manipulation

30

Page	offset

Page	Offset

Virtual	Page	Number

TLB	Index

request	from	CPU:

𝑚-bit	physical	
address:

split	to	access	TLB:

(on	TLB	miss)	access	PT:

𝑛-bit	virtual	address

Page	offsetPhysical	Page	Number

OffsetCache	Index

TLB	Tag

Cache	Tagsplit	to	access	cache:

TRANSLATION

CSE351, Summer 2020L21: Virtual Memory II

Context	Switching	Revisited

v What	needs	to	happen	when	the	CPU	switches	
processes?
§ Registers:

• Save	state	of	old	process,	load	state	of	new	process
• Including	the	Page	Table	Base	Register	(PTBR)

§ Memory:
• Nothing	to	do!		Pages	for	processes	already	exist	in	memory/disk	and	
protected	from	each	other

§ TLB:
• Invalidate all	entries	in	TLB	– mapping	is	for	old	process’	VAs	

§ Cache:
• Can	leave	alone	because	storing	based	on	PAs	– good	for	shared	data

31

CSE351, Summer 2020L21: Virtual Memory II

Memory	Overview

32

Disk

Main	memory
(DRAM)

CacheCPU

Page

Page
Line

Block

requested	32-bits

v movl 0x8043ab, %rdi

TLB

MMU

CSE351, Summer 2020L21: Virtual Memory II

Summary	of	Address	Translation	Symbols

v Basic	Parameters
§ N = 2! Number	of	addresses	in	virtual	address	space
§ M = 2" Number	of	addresses	in	physical	address	space
§ P = 2# Page	size	(bytes)

v Components	of	the	virtual	address	(VA)
§ VPO Virtual	page	offset	
§ VPN Virtual	page	number
§ TLBI TLB	index
§ TLBT TLB	tag

v Components	of	the	physical	address	(PA)
§ PPO Physical	page	offset	(same	as	VPO)
§ PPN Physical	page	number

33

CSE351, Summer 2020L21: Virtual Memory II

Virtual	Memory	Summary

v Programmer’s	view	of	virtual	memory
§ Each	process	has	its	own	private	linear	address	space
§ Cannot	be	corrupted	by	other	processes

v System	view	of	virtual	memory
§ Uses	memory	efficiently	by	caching	virtual	memory	pages

• Efficient	only	because	of	locality

§ Simplifies	memory	management	and	sharing
§ Simplifies	protection	by	providing	permissions	checking

34

CSE351, Summer 2020L21: Virtual Memory II

Memory	System	Summary
v Memory	Caches	(L1/L2/L3)

§ Purely	a	speed-up	technique
§ Behavior	invisible	to	application	programmer	and	(mostly)	OS
§ Implemented	totally	in	hardware

v Virtual	Memory
§ Supports	many	OS-related	functions

• Process	creation,	task	switching,	protection
§ Operating	System	(software)

• Allocates/shares	physical	memory	among	processes
• Maintains	high-level	tables	tracking	memory	type,	source,	sharing
• Handles	exceptions,	fills	in	hardware-defined	mapping	tables

§ Hardware
• Translates	virtual	addresses	via	mapping	tables,	enforcing	permissions
• Accelerates	mapping	via	translation	cache	(TLB)

35

CSE351, Summer 2020L21: Virtual Memory II

Simple	Memory	System	Example	(small)

v Addressing
§ 14-bit	virtual	addresses
§ 12-bit	physical	address
§ Page	size	=	64	bytes

36

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN
Virtual	Page	Number Virtual	Page	Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
Physical	Page	Number Physical	Page	Offset

CSE351, Summer 2020L21: Virtual Memory II

Simple	Memory	System:		Page	Table

v Only	showing	first	16	entries	(out	of	_____)
§ Note:		showing	2	hex	digits	for	PPN	even	though	only	6	bits
§ Note: other	management	bits	not	shown,	but	part	of	PTE

37

VPN PPN Valid
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN Valid
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

CSE351, Summer 2020L21: Virtual Memory II

Simple	Memory	System:		TLB

v 16	entries	total
v 4-way	set	associative

38

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual	page	offsetvirtual	page	number

TLB	indexTLB	tag

0–021340A10D030–073
0–030–060–080–022
0–0A0–040–0212D031
102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why	does	the	
TLB	ignore	the	
page	offset?

CSE351, Summer 2020L21: Virtual Memory II

Simple	Memory	System:		Cache

v Direct-mapped	with	K =	4	B,	C/K =	16
v Physically	addressed

39

11 10 9 8 7 6 5 4 3 2 1 0

physical	page	offsetphysical	page	number

cache	offsetcache	indexcache	tag

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

Index Tag Valid B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 – – – –
2 1B 1 00 02 04 08
3 36 0 – – – –
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 – – – –
7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 – – – –
A 2D 1 93 15 DA 3B
B 0B 0 – – – –
C 12 0 – – – –
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 – – – –

CSE351, Summer 2020L21: Virtual Memory II

Current	State	of	Memory	System

Cache:

TLB:
Page	table	(partial):

Index Tag V B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 – – – –
2 1B 1 00 02 04 08
3 36 0 – – – –
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 – – – –
7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 – – – –
A 2D 1 93 15 DA 3B
B 0B 0 – – – –
C 12 0 – – – –
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

CSE351, Summer 2020L21: Virtual Memory II

Polling	Question	[VM	III]
Memory	Request	Example	#1

v Virtual	Address:		0x03D4

v Physical	Address:		

41

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

1
7

1
6

0
5

1
4

0
3

1
2

0
1

0
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

Give your answer for Data(byte) at: http://pollev.com/pbjones

CSE351, Summer 2020L21: Virtual Memory II

Memory	Request	Example	#2

v Virtual	Address:		0x038F

v Physical	Address:		

42

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

1
7

0
6

0
5

0
4

1
3

1
2

1
1

1
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

CSE351, Summer 2020L21: Virtual Memory II

Memory	Request	Example	#3

v Virtual	Address:		0x0020

v Physical	Address:		

43

TLBITLBT

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

CSE351, Summer 2020L21: Virtual Memory II

Memory	Request	Example	#4

v Virtual	Address:		0x036B

v Physical	Address:		

44

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

0
7

1
6

1
5

0
4

1
3

0
2

1
1

1
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN	______ TLBT	_____ TLBI	_____ TLB	Hit?	___ Page	Fault?	___ PPN _____

CT	______ CI	_____ CO	_____ Cache	Hit?	___ Data	(byte)	_______

Note: It	is	just	
coincidence	that	the	
PPN	is	the	same	width	

as	the	cache	Tag

CSE351, Summer 2020L21: Virtual Memory II

Practice	VM	Question
v Our	system	has	the	following	properties

§ 1	MiB of	physical	address	space
§ 4	GiB of	virtual	address	space
§ 32	KiB	page	size
§ 4-entry	fully	associative	TLB	with	LRU	replacement

a) Fill	in	the	following	blanks:

45

________ Entries	in	a	page table ________ Minimum	bit-width	of	
PTBR

________ TLBT	bits ________ Max	#	of	valid	entries	
in	a	page table

CSE351, Summer 2020L21: Virtual Memory II

Practice	VM	Question
v One	process	uses	a	page-aligned	squarematrix	mat[] of	32-

bit	integers	in	the	code	shown	below:
#define MAT_SIZE = 2048
for(int i = 0; i < MAT_SIZE; i++)
mat[i*(MAT_SIZE+1)] = i;

b) What	is	the	largest	stride	(in	bytes)	between	successive	
memory	accesses	(in	the	VA	space)?

46

CSE351, Summer 2020L21: Virtual Memory II

Practice	VM	Question
v One	process	uses	a	page-aligned	squarematrix	mat[] of	32-

bit	integers	in	the	code	shown	below:
#define MAT_SIZE = 2048
for(int i = 0; i < MAT_SIZE; i++)
mat[i*(MAT_SIZE+1)] = i;

c) Assuming	all	of	mat[] starts	on	disk,	what	are	the	following	
hit	rates	for	the	execution	of	the	for-loop?

47

________ TLB	Hit	Rate ________ Page	Table	Hit	Rate

CSE351, Summer 2020L21: Virtual Memory II

Page	Table	Reality

v Just	one	issue…	the	numbers	don’t	work	out	for	the	
story	so	far!

v The	problem	is	the	page	table	for	each	process:
§ Suppose	64-bit	VAs,	8	KiB	pages,	8	GiB physical	memory
§ How	many	page	table	entries	is	that?	

§ About	how	long	is	each	PTE?

§ Moral: Cannot	use	this	naïve	implementation	of	the	
virtual→physical page	mapping	– it’s	way too	big

48

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L21: Virtual Memory II

A	Solution:		Multi-level	Page	Tables

49

Page	table	
base	register

(PTBR)

VPN	1
0p-1n-1

VPOVPN	2 ... VPN	k

PPN

0p-1m-1
PPOPPN

Virtual	Address

Physical	Address

... ...

Level	1
page	table

Level	2
page	table

Level	k
page	table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This	is	called	a	page	walk

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L21: Virtual Memory II

Multi-level	Page	Tables

v A	tree	of	depth	𝑘 where	each	node	at	depth	𝑖 has	up	to	2$
children	if	part	𝑖 of	the	VPN	has	𝑗 bits

v Hardware	for	multi-level	page	tables	inherently	more	
complicated
§ But	it’s	a	necessary	complexity	– 1-level	does	not	fit

v Why	it	works:	Most	subtrees	are	not	used	at	all,	so	they	are	
never	created	and	definitely	aren’t	in	physical	memory
§ Parts	created	can	be	evicted	from	cache/memory	when	not	being	used
§ Each	node	can	have	a	size	of	~1-100KB

v But	now	for	a	𝑘-level	page	table,	a	TLB	miss	requires	𝑘 + 1
cache/memory	accesses
§ Fine	so	long	as	TLB	misses	are	rare	– motivates	larger	TLBs

50

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L21: Virtual Memory II

For	Fun:		DRAMMER	Security	Attack
v Why	are	we	talking	about	this?

§ Recent: Announced	in	October	2016;	Google	released	
Android	patch	on	November	8,	2016

§ Relevant: Uses	your	system’s	memory	setup	to	gain	
elevated	privileges
• Ties	together	some	of	what	we’ve	learned	about	virtual	memory	and	
processes

§ Interesting: It’s	a	software	attack	that	uses	only	hardware	
vulnerabilities and	requires	no	user	permissions

51

CSE351, Summer 2020L21: Virtual Memory II

Underlying	Vulnerability:		Row	Hammer

v Dynamic	RAM	(DRAM)	has	gotten	denser	over	time
§ DRAM	cells	physically	closer	and	
use	smaller	charges

§ More	susceptible	to	“disturbance
errors”	(interference)

v DRAM	capacitors	need	to	be	
“refreshed”	periodically	(~64	ms)
§ Lose	data	when	loss	of	power
§ Capacitors	accessed	in	rows

v Rapid	accesses	to	one	row	can
flip	bits	in	an	adjacent	row!
§ ~	100K	to	1M	times 52

By	Dsimic (modified),	CC	BY-SA	4.0,	
https://commons.wikimedia.org/w

/index.php?curid=38868341

CSE351, Summer 2020L21: Virtual Memory II

Row	Hammer	Exploit

v Force	constant	memory	access
§ Read	then	flush	the	cache	
§ clflush – flush	cache	line

• Invalidates	cache	line	containing	the	
specified	address

• Not	available	in	all	machines	or	
environments

§ Want	addresses	X and	Y to	fall	in	activation	target	row(s)
• Good	to	understand	how	banks of	DRAM	cells	are	laid	out

v The	row	hammer	effect	was	discovered	in	2014	
§ Only	works	on	certain	types	of	DRAM	(2010	onwards)
§ These	techniques	target	x86	machines

53

hammertime:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
jmp hammertime

CSE351, Summer 2020L21: Virtual Memory II

Consequences	of	Row	Hammer

v Row	hammering	process	can	affect	another	process	
via	memory
§ Circumvents	virtual	memory	protection	scheme
§ Memory	needs	to	be	in	an	adjacent	row	of	DRAM

v Worse:		privilege	escalation
§ Page	tables	live	in	memory!
§ Hope	to	change	PPN	to	access	other	parts	of	memory,	or	
change	permission	bits

§ Goal: gain	read/write	access	to	a	page	containing	a	page	
table,	hence	granting	process	read/write	access	to	all	of	
physical	memory

54

CSE351, Summer 2020L21: Virtual Memory II

Effectiveness?

v Doesn’t	seem	so	bad	– random	bit	flip	in	a	row	of	
physical	memory
§ Vulnerability	affected	by	system	setup	and	physical	
condition	of	memory	cells

v Improvements:
§ Double-sided	row	hammering	increases	speed	&	chance
§ Do	system	identification	first		(e.g.	Lab	4)

• Use	timing	to	infer	memory	row	layout	&	find	“bad”	rows
• Allocate	a	huge	chunk	of	memory	and	try	many	addresses,	looking	for	
a	reliable/repeatable	bit	flip

§ Fill	up	memory	with	page	tables	first
• fork extra	processes;	hope	to	elevate	privileges	in	any	page	table

55

CSE351, Summer 2020L21: Virtual Memory II

What’s	DRAMMER?

v No	one	previously	made	a	huge	fuss
§ Prevention: error-correcting	codes,	target	row	refresh,	
higher	DRAM	refresh	rates

§ Often	relied	on	special	memory	management	features
§ Often	crashed	system	instead	of	gaining	control

v Research	group	found	a	deterministic	way	to	induce	
row	hammer	exploit	in	a	non-x86	system	(ARM)
§ Relies	on	predictable	reuse	patterns	of	standard	physical	
memory	allocators

§ Universiteit Amsterdam,	Graz	University	of	Technology,	and
University	of	California,	Santa	Barbara

56

CSE351, Summer 2020L21: Virtual Memory II

DRAMMER	Demo	Video	
v It’s	a	shell,	so	not	that	glamorous,	but	still	interesting

§ Apologies	that	the	text	is	so	small	on	the	video

57

CSE351, Summer 2020L21: Virtual Memory II

How	did	we	get	here?

v Computing	industry	demands	more	and	faster	storage	
with	lower	power	consumption

v Ability	of	user	to	circumvent	the	caching	system
§ clflush is	an	unprivileged	instruction	in	x86
§ Other	commands	exist	that	skip	the	cache

v Availability	of	virtual	to	physical	address	mapping
§ Example: /proc/self/pagemap on	Linux	
(not	human-readable)

v Google	patch	for	Android	(Nov.	8,	2016)
§ Patched	the	ION	memory	allocator

58

CSE351, Summer 2020L21: Virtual Memory II

More	reading	for	those	interested

v DRAMMER	paper:		
https://vvdveen.com/publications/drammer.pdf

v Google	Project	Zero:		
https://googleprojectzero.blogspot.com/2015/03/exp
loiting-dram-rowhammer-bug-to-gain.html

v First	row	hammer	paper:		
https://users.ece.cmu.edu/~yoonguk/papers/kim-
isca14.pdf

v Wikipedia:		
https://en.wikipedia.org/wiki/Row_hammer

59

CSE351, Summer 2020L21: Virtual Memory II

Quick	Review
v What	do	Page	Tables	map?

v Where	are	Page	Tables	located?

v How	many	Page	Tables	are	there?

v True	/	False:		Virtual	Addresses	that	are	contiguous	will	always	
be	contiguous	in	physical	memory

v TLB	stands	for	_______________________	
and	stores	_______________

60

CSE351, Summer 2020L21: Virtual Memory II

Quick	Review	Answers
v What	do	Page	Tables	map?

§ VPN	→ PPN	or	disk	address
v Where	are	Page	Tables	located?

§ In	physical	memory
v How	many	Page	Tables	are	there?

§ One	per	process
v Can	your	program	tell	if	a	page	fault	has	occurred?

§ Nope,	but	it	has	to	wait	a	long	time

v What	is	thrashing?
§ Constantly	paging	out	and	paging	in

v True	/	False:		Virtual	Addresses	that	are	contiguous	will	always	be	
contiguous	in	physical	memory
§ Could	fall	across	a	page	boundary

v TLB	stands	for	Translation	Lookaside	Buffer and	stores	page	table	entries

61

CSE351, Summer 2020L21: Virtual Memory II

Handouts	Diagrams

62

Virtual	Address

TLB	Lookup

Check	the
Page	Table

Update	
TLB

Page	Fault
(OS	loads	page)

Protection
Check

Physical
Address

TLB	Miss TLB	Hit

Page	not
in	Mem

Access
Denied

Access	
Permitted

Protection
Fault

SIGSEGV

Page	
in	Mem

Check	cacheFind	in	Disk Find	in	Mem
HitMiss

CSE351, Summer 2020L21: Virtual Memory II

Handouts	Diagrams

63

Page	offset

Page	Offset

Virtual	Page	Number

TLB	Index

request	from	CPU:

𝑚-bit	physical	address:

split	to	access	TLB:

(on	TLB	miss)	access	PT:

𝑛-bit	virtual	address

Page	offsetPhysical	Page	Number

OffsetCache	Index

TLB	Tag

Cache	Tagsplit	to	access	cache:

TRANSLATION

CSE351, Summer 2020L21: Virtual Memory II

Address	Translation

v VM	is	complicated,	but	also	elegant	and	effective
§ Level	of	indirection	to	provide	isolated	memory	&	caching
§ TLB	as	a	cache	of	page	tables
avoids	two	trips	to	memory	
for	every	memory	access

64

Virtual	Address

TLB
Lookup

Check	the
Page	Table

Update	
TLB

Page	Fault
(OS	loads	page)

Protection
Check

Physical
Address

TLB	Miss TLB	Hit

Page	not
in	Mem

Access
Denied

Access	
Permitted

Protection
Fault

SIGSEGV

Page	
in	Mem

Check	cacheFind	in	Disk Find	in	Mem

