W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Virtual Memory I

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu FIGURING OUT WHY MY HOME
Callum Walker SERVER KEEPS RUNNING OUT PLUGGING IT INTo A LIGHT TIMER
Sam Wolfson OF SWAP SPACE. AND CRASHING : SO |T REBOOTS EVERY 24 HOURS:

|
|

Tim Mandzyuk

TIFTTIREILE
TIIRFTRYTY

1-10 HOURS 5 MINUTES

\JHY EVERYTHING T HAVE IS BROKEN
https://xkcd.com/1495/

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Administrivia

+» Questions doc: https://tinyurl.com/CSE351-8-10

+» hw19 is optional

= Can complete it at any point before the quarter ends
® Practice with virtual memory concepts

% hw20 due Friday (8/14) — 10:30am

< Lab 4 due Wednesday (8/12) — 11:59pm

= All about caches!

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Virtual Memory (VM)

Overview and motivation

VM as a tool for caching

Address translation

VM as a tool for memory management
VM as a tool for memory protection

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Address Translation

How do we perform the virtual
— physical address translation?

Main memory

CPU Chip

Virtual address Physical address
(VA) (PA)

—>
0x4100 Ox4

/

/

Memory Management Unit

\ 4
N HEONEO

Data (int/float)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Address Translation: Page Tables E\%

21\"’?,‘.93-&.\

] bt ~5""5

+» CPU-generated address can be split into:

_—n—¢ o' 5 —— —p V¥
n-bit address: | Virtual Page Number | Page 01;5,?'

o4 loed o PI/EQW =1 Boer. KFSF
= Request is Virtual Address (VA), want PhysicatAddress (PA)

= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" |Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

= Has an entry for every virtual page

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Page Table Dlagra

ce gl " v Q»A'M? Physical memory Phys;ca/ page #
VPN

(DRAM) / YeN
Page Table
Virtual page # (DRAM) VP1 PPO

Valid PPN/Disk Addr VP 2 PP 1
0 null VP 7 PP 2

./
o VP 4 PP 3

&'u,v.a.\v e _
3 — <. Virtual memory

~

null P (DRAM/disk)

A\%W‘\/
2‘(\\\

0
1
2
3
4
5
6
7

Yolove heh 2“—? oA ied 5
+ Page tables stored in physical memory
"= Too big to fit elsewhere — managed by MMU & OS

+ How many page tables in the system?
" One per process

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Page Table Adoq!!ess Translation

CPU AT
Page table : Gw ‘¥t
base register Virtual page number (VPN) /

(PTBR) /

Virtual address (VA))
/ Virtual page offset (VPO)

Page table address Page table
for process Valid \

> ol s

- s

Valid bit = 0:
page not in memory <€
(page fault)

4 / \ 4
Physical page number (PPN) // Physical page offset (PPO)

In most cases, the MMU can Physical address (PA) (

perform this translation
without software assistance

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Polling Question [VM II]

HoY‘v many bits wide are the following fields?
2. 9% "
= 16 K|B pages
= 48-bit virtual addresses
N qo—z"\

= 16 GIB physical memory

= \/ote at: http://pollev.com/pbjones
\}}(W &\-*-—\ L{g b'*’ s

?Amu«— o2)= B 55
VPN PPN | oo . L{“‘) H LS
(A) 34 24 | 7T wemT 0%

ki R
(B) 32 18 | gy = VA= &&“/?ixi
PAwd —Tispe. = £°
PIN wdte=

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Page Hit

+ Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory

Virtual address Valid PPN/Disk Addr (DRAM)
l pTEO [0O null VP 1

VP 2
VP 7
VP 4

Virtual memory

/’7PTE 7 - . (DRAM/disk)

7 okkRy -\ bAd
= . 9/ ’)1 © ‘v\'" -
L oL -

Exam le: Page size = 4K|B
P g ok

Virtual Addr: |0x00 7;4 0b| Physical Addr: |Ew 2 410D

VPN: | O oo 7 PPN: | O 27

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Page Fault

« Page fault: VM reference is NOT in physical memory

Page Table (DRAM) Physical memory

Virtual address Valid PPN/Disk Addr (DRAM)
PTEO| O null VP 1
VP 2
VP 7

VP 4

Virtual memory
(DRAM/disk)

Example: Page size = 4 KiB

Provide a virtual address request (in hex) that
results in this particular page fault:

Virtual Addr: |()<09 % 9‘:,22,&5\’

& s

S

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Reminder: Page Fault Exception

int a[1000];
int main () {
That portion (page) of user’s memory a[500]

is currently on disk

User writes to memory location

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

User code OS Kernel code

exception: page fault handle_page_fault:

Create page and

returns load into memory

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try

W UNIVERSITY of WASHINGTON

L21: Virtual Memory |l

Handling a Page Fault

Page miss causes page fault (an exception)

Virtual address

PTEO

Page Table (DRAM)
Valid PPN/Disk Addr

0 null

CSE351, Summer 2020

Physical memory
(DRAM)

VP 1 PPO
VP 2

VP 7
VP 4

Virtual memory
(DRAM/disk)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO| O null VP 1 PP O
VP 2
VP 7
VP 4

Virtual memory
(DRAM/disk)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)

PTEO| O null / VP 1 PPO

> VP 2
VP 7
VP3

Virtual memory
(DRAM/disk)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Handling a Page Fault

5 e
Page miss causes page fault (an exception) Owo‘?’s" g™

Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit!

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)

PTEO| O null / VP 1 PP O

> VP 2
VP 7
VP 3

Virtual memory
(DRAM/disk)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Virtual Memory (VM)

Overview and motivation

VM as a tool for caching

Address translation

VM as a tool for memory management
VM as a tool for memory protection

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

VM for Managing Multiple Processes

+ Key abstraction: each process has its own virtual address space
" |t can view memory as a simple linear array
+~ With virtual memory, this simple linear virtual address space

need not be contiguous in physical memory
" Process needs to store data in another VP? Just map it to any PP!

0 0

Virtual Physical
Address . Address
Space for Space

Process 1: (DRAM)

Address (e.g., read-only
translation library code)

Virtual
Address
Space for
Process 2:

N-1

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Simplifying Linking and Loading

Memory

< Linking Kernel virtual memory I invisible to
user code

® Each program has similar virtual User stack

created at runtime
address space () Srsp

= Code, Data, and Heap always ' (stactk
start at the same addresses t pointer)

Memory-mapped region for
shared libraries

+ Loading

= execve allocates virtual pages
for . text and .data sections T
& creates PTEs marked as invalid Run-time heap

(created by malloc)

The .text and .data sections Read/wrri .

. ead/write segmen Loaded
are copied, page .by page, on (.data, .bss) | from the
demand by the virtual memory sl sgTE executable

system (.init, .text, .rodata) file
0x400000

Unused

0

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

VM for Protection and Sharing

+» The mapping of VPs to PPs provides a simple mechanism to
protect memory and to share memory between processes

= Sharing: map virtual pages in separate address spaces to the same
physical page (here: PP 6)

= Protection: process can’t access physical pages to which none of its
virtual pages are mapped (here: Process 2 can’t access PP 2)

0 0

Virtual _ Physical

Address VP . Address
Space for Space

Process 1: (DRAM)

Address (e.g., read-only
translation library code)

Virtual
Address
Space for

Process 2:
N-1

W UNIVERSITY of WASHINGTON

L21: Virtual Memory |l

CSE351, Summer 2020

Memory Protection Within Process

+» VM implements read/write/execute permissions

= Extend page table entries with permission bits

= MMU checks these permission bits on every memory access

- If violated, raises exception and OS sends SIGSEGV signal to process

Process 1:
VP O:
VP 1:
VP 2:

Process 7j:
VP O:
VP 1:
VP 2:

Valid

READ WRITE

(segmentation fault)

EXEC

Yes

Yes

No

No

Yes

Yes

No

Yes

Yes

Yes

No

READ WRITE EXEC

Yes

Yes

No

Physical
Address Space

Yes

No

No

Yes

Yes

No

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Review Question

+» What should the permission bits be for pages from
the following sections of virtual memory?

Section Read Write Execute
Stack] O

Heap \

O
5 Static Data \ O
O

Literals

. ‘ on\y ex
Instructions 0 ‘ l .\,:‘gu.,.

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Address Translation: Page Hit (?Q”“fﬁwi ey

CPU Chip

CPU e

PA

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU

[VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry]

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

: Pess 77
Address Translation: Page Fault i NIV

Page fault handler

v

CPU Chip Victim page |

o < New page
6

CPU

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Hmm... Translation Sounds Slow

The MMU accesses memory twice: once to get the
PTE for translation, and then again for the actual
memory request

= The PTEs may be cached in L1 like any other memory word
- But they may be evicted by other data references

- And a hit in the L1 cache still requires 1-3 cycles

+» What can we do to make this faster?

= Solution: add another cache! &

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Speeding up Translatlon with a TLB

C&CM¢U
+ Translation Lookaside Buffer (TLB):

= Small hardware cache in MMU

- Split VPN into TLB Tag and TLB Index based on # of sets in TLB
= Maps virtual page numbers to physical page numbers
= Stores page table entries for a small number of pages

- Modern Intel processors have 128 or 256 entries in TLB

= Much faster than a page table lookup in cache/memory

TLB

Virtual Page Number | Page offset

Yoy T

_)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

TLB Hit
(oo™

CPU Chip

Data

A TLB hit eliminates a memory access!

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

TLB Miss

CPU Chip

PA

Data

A TLB miss incurs an additional memory access (the PTE)
= Fortunately, TLB misses are rare

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Fetching Data on a Memory Read

1) Check TLB franslote V& = PA

" |nput: VPN, Output: PPN
= TLB Hit: Fetch translation, return PPN

= TLB Miss: Check page table (in memory)
- Page Table Hit: Load page table entry into TLB

- Page Fault: Fetch page from disk to memory, update
corresponding page table entry, the then load entryinto TLB

—_— N - \—-—— —

2) Check cache vse,PA Yo 0)0;\' dag- "~
* Input: physical address, OQutput: data

® Cache Hit: Return data value to processor

" Cache Miss: Fetch data value from memory, store it in
cache, return it to processor

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Address Translation

Virtual fddress

TLB Lookup

TLB Miss TLB Hit

¥)

Check the
Page Table

Page not
in Mem

Page
in Mem

Protection
Check

Access

Access
Denied 1

1 Permitted

Page Fault
(OS loads page)

Update
TLB

Protection
Fault

Physical
Address

Find in Disk

I

Find in Mem

1

SIGSEGV

l

Check cache

l/V’iLl Hit
1 29

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Address Manipulation

request from CPU: n-bit virtual address

I

split to access TLB: TLB Index| Page Offset

!

(on TLB miss) access PT: Virtual Page Number Page offset

TRANSLATION

m-bit physical
address:

Physical Page Number Page offset

by

split to access cache: Cache Index| Offset

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Context Switching Revisited

+» What needs to happen when the CPU switches
processes?

= Registers:
- Save state of old process, load state of new process
« Including the Page Table Base Register (PTBR)
PL\OQE%\
" Memory:

- Nothing to do! Pages for processes already exist in memory/disk and
protected from each other

" TLB:

- Invalidate all entries in TLB — mapping is for old process’ VAs

= Cache:
- Can leave alone because storing based on PAs — good for shared data

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Memory Overview (dda floo)

»mov]l 0x8043ab, %rdi

requested 32-bits Main memory

| (DRAM)

Cache

Page

—

Line r\ '

Block

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Summary of Address Translation Symbols

<« Basic Parameters

= N =2" Number of addresses in virtual address space
= M = 2™ Number of addresses in physical address space
= P=2P Page size (bytes)

+» Components of the virtual address (VA)
= VPO Virtual page offset

= VPN Virtual page number
= TLBI TLB index

" TLBT TLB tag

+» Components of the physical address (PA)
= PPO Physical page offset (same as VPO)
" PPN Physical page number

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Virtual Memory Summary

+ Programmer’s view of virtual memory

= Each process has its own private linear address space
= Cannot be corrupted by other processes

+ System view of virtual memory

= Uses memory efficiently by caching virtual memory pages
- Efficient only because of locality

= Simplifies memory management and sharing
= Simplifies protection by providing permissions checking

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Memory System Summary

+ Memory Caches (L1/L2/L3)
= Purely a speed-up technique
= Behavior invisible to application programmer and (mostly) OS
" Implemented totally in hardware

% Virtual Memory

= Supports many OS-related functions
- Process creation, task switching, protection
= QOperating System (software)
- Allocates/shares physical memory among processes
- Maintains high-level tables tracking memory type, source, sharing
- Handles exceptions, fills in hardware-defined mapping tables
= Hardware
- Translates virtual addresses via mapping tables, enforcing permissions
- Accelerates mapping via translation cache (TLB)

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Simple Memory System Example (small)

+» Addressing

= |k \%.@ VA Spacr
* 14-bit virtual addresses n='4 <2 }\\,1: }__\ X (BP RS

P

13 12 11 10 9 8 7 6 5 4 3 2 1 0

pr,N Vi en 7 VPO

\ A
—

n-pP Virtual Page Number Virtual Page Offset
L '.V\m St

11 10 9 8 7 6 5 4 3 2 1 0

PPN

Physical Page Number Physical Page Offset

= vYw—¢

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Simple Memory System: Page Table

: \
» Only showing first 16 entries (out of 2% =25L) S 'W

= Note: showing 2 hex digits for PPN even though only 6 bits
®= Note: other management bits not shown, but part of PTE
(0.2 WX

VPN | PPN | Valid VPN | PPN | Valid
28 1 13
— 17
33 09
02 -

16

2D

oD

T m O O ® > O ®

0
1
2
3
4
5
6
7

CSE351, Summer 2020

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il

Simple Memory System: TLB

2 b&s
TLB tag > TLB index

13 12 11 10 9 8 7 6 5

« 16 entries total
Why does the

TLB ignore the

+» 4-way set associative
page offset?

VA

virtual page number > virtual page offset ——

i (Do) o 1 uM\Uo\&*N | ey (blee) 2 1 wary (Week) 3

Tag

PPN

Valid

Tag

PPN

Valid

Tag

PPN

Valid

Tag

PPN

Valid

03

09

0D

1

00

0

07

02

1

03

2D

02

04

0A

02

08

06

03

0
0
1

0
0
1

0
0
0

07

03

0D

OA

34

02

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Note: Itis just

Simple Memory SyStem: Cache coincidence that the

PPN is the same width
as the cache Tag

Direct-mapped with K=4B, C/K = 16

Physically addressed N
vty 4o)fws

< cache tag cache mdex —>cache offset

Q 11 9 8 4 3 2 1 0

<— physical page number —s+— physical page offset ——

Tag | Valid | BO B1 B2 B3 | Index| Tag | Valid | BO B1
19 1 99 11 23 11 8 24 1 3A 00
15 - - - - 2D - -
1B 00 02 04 08 2D 93 15
36 — — — — 0B — —
32 43 6D 8F 09 12 - -
0D 36 72 FO 1D 16 04 96
31 — — — — 13 83 77
16 11 C2 DF 03 14 - -

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Current Staen;ce of Memory System
Ciccled &g pefed o D S axipe B Page table (partial):
TagIPPNI V |Tag | PPN, Tag | PPN| V |Tag PPN @)VI;N P;ZV /v I;N Png

03, — | O ' ' 00 | L oxd 071 02 | — | 17

03‘/{72@1 1Y] 02 | 04
021 — 10 | 06

071 — 1 0 1loDli 1v] oA |

33

|
0A | 0
oo 02
i

03
02 |

4
ol 16

_ 2Dk

Cache:

Index | Tag
19
15
1B
36
32

31
16

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

PO"ing Que5tion [VM I"] Note: It is just

coincidence that the
Memory Request Example #1 PPN is the same width

as the cache Tag
+ Virtual Address: 0x03D4

“ TLBT —<«— TLBl —
13 12 11 10 9 8 7 6

O|0 |0 |0 |1 1 1 1
“ VPN >t >

von 20T et Ox3 1 5 TLB Hit?\{_ Page Fault? ﬁ PPN D"‘QD

WWth prge Fobve (g For . (L0 (e —
o™ 1o Ok iaas "'\Tgkg o Yookt n

+» Physical Address:

<

11
> O

&
<

CT 9»"9‘) Cl 5- CcO 0 Cache Hit? i Data (byte) < 34

Le SIS (oClE Get \o\eds o £ sat
‘W Locle 52t Yo \oek {n ol

Give your answer for Data(byte) at: http://pollev.com/pbjones

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Note: Itis just

Memory ReqUESt Example #2 coincidence that the

PPN is the same width
as the cache Tag

« Virtual Address: O0x038F

“ TLBT —<«— TLBl —
13 12 11 10 9 8 7 6

O|0 |0 |0 |1 1 10
“ VPN >t >

ven JOE 1iar 9%93 1 2 TLB Hit? ﬂ Page Fault?l ppN N /A

+» Physical Address:

-« CT
11 10 9 8

PPO .

Cache Hit?V_/"'\ Data (byte) VX /e~

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Note: Itis just

Memory RequeSt Example #3 coincidence that the

PPN is the same width
as the cache Tag

« Virtual Address: 0x0020

“ TLBT —<«— TLBl —
13 12 11 10 9 8 7 6

o o000 OO0 |O0|O
< VPN s

ven %00 1eT 9x09 118 O TLB Hit?ﬁ Page Fault?A/ ppN X 2R

+» Physical Address:

<

Cache Hit? N Data (byte) (\/0\

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Note: Itis just

Memory RequeSt Example #4 coincidence that the

PPN is the same width
as the cache Tag

« Virtual Address: 0x03 6B

+ TLBT —+ <«— TLBl —
13 12 11 10 9 8 7 6

O 0 0|0 |1 1 |0 1
“ VPN pe

VPNQ’—‘_DD TLBT 023 TuBI 1 TLB Hit?l Page Fault?(\i PPN&ZD

+» Physical Address:

?

Cache Hit? Y Data (byte) V< 38

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Practice VM Question

+» Our system has the following propertles
r}@ \91‘-5

n - 32 \WI¥5
2\¢ L ¥

- 731‘ |V|IB of phy5|cal address space
- ;4 G|B ofL\,/,thuaI address space
132%8 page size ¢

= 4-entry fully associative TLB with LRU replacement
=

\ 9t
a) Fill in the following blanks:
\

?— Entriesin a page table 7’0 Minimum bit-width of

Z'(Pé/ & ot v:er:a:_';

|+ <
TLBT bits 2 Max # of valid entries
VPN = 7\ BT /18T in a page table

V/l

here TLBE=9 2

PTBR PS5 e) 6Adce5 S

—

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Practice VM Question .
V5 ., SZE5%
ael Nl&r‘ﬁ 01 7o ©
- One process uses a page-aligned square matrixmat [] of 32-
bit integers in the code shown below: yi:i 2hH)~e$
#define MAT SIZE = 2048 &Y

for (int i = 0; i < MAT SIZE; i++) Dmrj
mat [1* (MAT SIZE+1)] = 1; o

\’

b) What is the largest stride (in bytes) between successive

memory accesses (in the VA space)?
o1 M%) Tndex
Q,LC@GQ«E

9

) .,\oﬂ'/"'ﬁ"d9 0\ a
‘w"‘ Y
9 2949 / u)

3"420”? 6'(" de iS5 2047143 '—320'1‘(-“'1 Lyi}-\

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Practice VM Question T
pate §i2ez 32 kiR = Z-

+ One process uses a page-aligned square matrix mat [] of 32-

bit integers in the code shown below: g
#define MAT SIZE = 2648.‘/@—4-1 z 8
for(int i = 0; i < MAT SIZE; i++)

mat [1* (MAT SIZE+1)] = 1;

c) Assuming all of mat [] starts on disk, what are the following
hit rates for the execution of the for-loop?

Bﬁ'i = };% TLB Hit Rate o %, Page Table Hit Rate

X . Ladex

4 gesdern’ Ginate wrttC yo swd o1

% V\&VPJ revisiE A RS ’ B nixg 0~£Of»$5 {_@ﬂ N
eotin (249 ol rwodti¥ TLg nisS \D‘N =

2d e%LC{'\L) o R __ ek miag Ao maJl" ;5
Mc:-:fﬂks 2__';/ '3 LF (o> f é“ﬂ:\a’“ﬁo\'ﬁ mMmass LSWIOQ
Pt 232t gt

S b harts on $5€) and

a’r\\'j one miss per AT

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

. This is extra
Page Table Reality (non-testable)

material

« Just one issue... the numbers don’t work out for the
story so far!

« The problem is the page table for each process:
n==bk , =13 bits m=DBY bits

= Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory

= How many page table entries is that? -

l PTE ‘H)r even/ Vl'r‘hul rmje_ z‘y\-r— /\)

o
= About how long is each PTE?
PFN\.:T()CH,\ + mahﬁ.jeh\en'l' bits = 2048 = ZSL'—b /

m-p (VDR WX

22 17407 bykes
per page Tudle!

" Moral: Cannot use this naive implementation of the
virtual->physical page mapping —it’s way too big

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il

CSE351, Summer 2020

This is extra
A Solution: Multi-level Page Tables |

non-testable)
material

page table This is called a page walk
base register

(PTBR)

Virtual Address

VPN 1 VPN 2

VPN k

Level 1 Level 2

page table page table
> o

Level k
page table

n

>
n
»

n
>

y

PPN

Physical Address

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

This is extra

Multi-level Page Tables (non-testable)

material

« Atree of depth k where each node at depth i has up to 2/
children if part i of the VPN has j bits

Hardware for multi-level page tables inherently more
complicated
= Butit’s a necessary complexity — 1-level does not fit

Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory

= Parts created can be evicted from cache/memory when not being used
= Each node can have a size of ~1-100KB

But now for a k-level page table, a TLB miss requires k + 1
cache/memory accesses

" Fine so long as TLB misses are rare — motivates larger TLBs

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

BONUS SLIDES

For Fun: DRAMMER Security Attack

+» Why are we talking about this?

= Recent: Announced in October 2016, Google released
Android patch on November 8, 2016

= Relevant: Uses your system’s memory setup to gain
elevated privileges

- Ties together some of what we’ve learned about virtual memory and
processes

= Interesting: It's a software attack that uses only hardware
vulnerabilities and requires no user permissions

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Underlying Vulnerability: Row Hammer

+» Dynamic RAM (DRAM) has gotten denser over time

= DRAM cells physically closer and
use smaller charges

= More susceptible to “disturbance
errors” (interference)

<~ DRAM capacitors need to be
“refreshed” periodically (64 ms)

= |ose data when loss of power patd |[R/w %_‘

= Capacitors accessed in rows DRAM cells

Activation target rows
M Victim row

< Rapid accesses to one row can
By Dsimic (modified), CC BY-SA 4.0,

ﬂlp bltS IN an adJacent rOW! https://commons.wikimedia.org/w
= ~ 100K to 1M times /index.php?curid=38868341

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il

CSE351, Summer 2020

Row Hammer Exploit

«» Force constant Mmemaory access

= Read then flush the cache hammertime: &

. flush he i mov (X), %eax
clflush —T1lush cache line mov (Y), Sebx
- Invalidates cache line containing the clflush (X)

specified address clflush (Y)

- Not available in all machines or Jmp hammertime -
environments

= Want addresses X and Y to fall in activation target row(s)
- Good to understand how banks of DRAM cells are laid out

«» The row hammer effect was discovered in 2014

= Only works on certain types of DRAM (2010 onwards)
" These techniques target x86 machines

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Consequences of Row Hammer

+» Row hammering process can affect another process
via memory
= Circumvents virtual memory protection scheme
= Memory needs to be in an adjacent row of DRAM

+» Worse: privilege escalation

= Page tables live in memory!
= Hope to change PPN to access other parts of memory, or
change permission bits

" Goal: gain read/write access to a page containing a page
table, hence granting process read/write access to all of

physical memory

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Effectiveness?

Doesn’t seem so bad — random bit flip in a row of
physical memory

= Vulnerability affected by system setup and physical
condition of memory cells

Improvements:
= Double-sided row hammering increases speed & chance
" Do system identification first (e.g. Lab 4)

« Use timing to infer memory row layout & find “bad” rows

- Allocate a huge chunk of memory and try many addresses, looking for
a reliable/repeatable bit flip

= Fill up memory with page tables first
- fork extra processes; hope to elevate privileges in any page table

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

What’s DRAMMER?

+» No one previously made a huge fuss

= Prevention: error-correcting codes, target row refresh,
higher DRAM refresh rates

= Often relied on special memory management features
= Often crashed system instead of gaining control

+» Research group found a deterministic way to induce
row hammer exploit in a non-x86 system (ARM)

= Relies on predictable reuse patterns of standard physical
memory allocators

= Universiteit Amsterdam, Graz University of Technology, and
University of California, Santa Barbara

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

DRAMMER Demo Video

+ It’s a shell, so not that glamorous, but still interesting

= Apologies that the text is so small on the video

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

How did we get here?

» Computing industry demands more and faster storage
with lower power consumption

+ Ability of user to circumvent the caching system
= clflushisan unprivileged instruction in x86
= Other commands exist that skip the cache

+ Availability of virtual to physical address mapping

= Example: /proc/self/pagemap on Linux
(not human-readable)

+» Google patch for Android (Nov. 8, 2016)

= Patched the ION memory allocator

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

More reading for those interested

» DRAMMER paper:
https://vvdveen.com/publications/drammer.pdf

+ Google Project Zero:
https://soogleprojectzero.blogspot.com/2015/03/exp
loiting-dram-rowhammer-bug-to-gain.html

% First row hammer paper:
https://users.ece.cmu.edu/~yoonguk/papers/kim-
iscald.pdf

+» Wikipedia:
https://en.wikipedia.org/wiki/Row hammer

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Quick Review

» What do Page Tables map?
VPN — PPN 4 disk ¢ddress

2 ‘\){yhe(e are Page Tables located?

y s N meynory

» HowssnanysPage Tables are there?

2 eM/“f—'/é?%éJ.”V’i regaladresses tiat steto ﬁﬁguous will always
be cantiglous in physical memory

pPige loo\mdatrx/t ’

% '\’H\ any SIF n phy si| mem

Pages can boe W\pfed‘ T

. TLB stands for

a nd stores MV\S iﬁ'my\ ibbiiccrde bﬂ"’er P&SQ "RB\E’, Gn‘hr\'e S
\—/\/\—/
Brtah for * cach e

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Quick Review Answers

What do Page Tables map?

= VPN — PPN or disk address

Where are Page Tables located?

" |n physical memory

How many Page Tables are there?

" One per process

Can your program tell if a page fault has occurred?

" Nope, but it has to wait a long time

What is thrashing?

® Constantly paging out and paging in

True /: Virtual Addresses that are contiguous will always be
contiguous in physical memory

® Could fall across a page boundary

TLB stands for Translation Lookaside Buffer and stores page table entries

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Handouts Diagrams

Virtual Address
]

TLB Lookup

TLB Miss TLB Hit
v

Protection
—p Check

Check the
Page Table

Page not Page Access Access
in Mem in Mem | Denied Permitted

Page Fault
(OS loads page)

Update
TLB

Protection
Fault

Find in Disk

Find in Mem

}

SIGSEGV

Physical
Address

}

Check cache
[Hit

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Handouts Diagrams

request from CPU: n-bit virtual address

'

split to access TLB: TLB Index| Page Offset

:

(on TLB miss) access PT: Virtual Page Number Page offset

TRANSLATION

m-bit physical address: Physical Page Number Page offset

y

split to access cache: Cache Index| Offset

W UNIVERSITY of WASHINGTON L21: Virtual Memory Il CSE351, Summer 2020

Address Translation

+» VM is complicated, but also elegant and effective
= Level of indirection to provide isolated memory & caching

= TLB as a cache of page tables
avoids two trips to memory Virtual f‘ddress

for every memory acCcess TLB
Lookup
TLB Miss TLB Hit

Check the | Protection
Page Table ” Check

Page not Page Access Access
in Mem [| in Mem | Denied [lPermitted

Page Fault U pdate Protect/on Physical
(OS loads page) TLB Fault Address

Find iln Disk Find iri Mem SIGSEGV Check cache

