
CSE351, Summer 2020L20: Processes II, Virtual Memory I

Processes	II,
Virtual	Memory	I
CSE	351	Summer	2020
Instructor:
Porter	Jones

Teaching	Assistants:
Amy	Xu
Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

ht
tp
:/
/r
eb

rn
.c
om

/r
e/
ba
d-
ch
ro
m
e-
11

62
08

2/

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-7

v hw18	due	Monday	(8/10)	– 10:30am
v hw19	is	optional

§ Can	complete	it	at	any	point	before	the	quarter	ends
§ Practice	with	virtual	memory	concepts

v Lab	4	due	Wednesday	(8/12) – 11:59pm	
§ All	about	caches!

2

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Fork	Example

v Both	processes	continue/start	execution	after	fork
§ Child	starts	at	instruction	after	the	call	to	fork (storing	into	pid)

v Can’t	predict	execution	order	of	parent	and	child
v Both	processes	start	with	x =	1

§ Subsequent	changes	to	x are	independent

v Shared	open	files:		stdout is	the	same	in	both	parent	and	child

3

void fork1() {
int x = 1;
pid_t fork_ret = fork();
if (fork_ret == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Modeling	fork with	Process	Graphs

v A	process	graph	is	a	useful	tool	for	capturing	the	partial	
ordering	of	statements	in	a	concurrent	program
§ Each	vertex	is	the	execution	of	a	statement
§ a→ bmeans	a happens	before	b
§ Edges	can	be	labeled	with	current	value	of	variables
§ printf vertices	can	be	labeled	with	output
§ Each	graph	begins	with	a	vertex	with	no	inedges

v Any	topological	sort	of	the	graph	corresponds	to	a	feasible	
total	ordering
§ Total	ordering	of	vertices	where	all	edges	point	from	left	to	right

4

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Fork	Example:		Possible	Output

5

void fork1() {
int x = 1;
pid_t fork_ret = fork();
if (fork_ret == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Polling	Question	[Proc II]

v Are	the	following	sequences	of	outputs	possible?
§ Vote	at	http://pollev.com/pbjones

6

void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re	lost…

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Fork-Exec

v fork-exec	model:
§ fork() creates	a	copy	of	the	current	process
§ exec*() replaces	the	current	process’	code	and	address	
space	with	the	code	for	a	different	program
• Whole	family	of	exec calls	– see	exec(3) and	execve(2)

7

// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {

pid_t fork_ret = fork();
if (fork_ret != 0) {

printf("Parent: created a child %d\n", fork_ret);
} else {

printf("Child: about to exec a new program\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

}

Note: the	return	values	of	fork and	
exec* should	be	checked	for	errors

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Exec-ing a	new	program

8

Stack

Code:	/usr/bin/bash
Data

Heap

Stack

Code:	/usr/bin/bash
Data

Heap

Stack

Code:	/usr/bin/bash
Data

Heap

Stack

Code:	/usr/bin/ls
Data

fork()

exec*()

Very	high-level	diagram	of	what	
happens	when	you	run	the	
command	“ls” in	a	Linux	shell:
v This	is	the	loading	part	of	CALL!

parent child child

CSE351, Summer 2020L20: Processes II, Virtual Memory I

execve Example

9

"/usr/bin/ls"
"-l"
"lab4"

"USER=rea"

"PWD=/homes/iws/rea"

myargv[argc] = NULL
myargv[2]
myargv[1]
myargv[0]

envp[n] = NULL
envp[n-1]
...
envp[0]

environ

myargv

if ((pid = fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

Execute "/usr/bin/ls –l lab4" in	child	process	using	current	
environment:

(argc == 3)

Run	the	printenv command	in	a	Linux	shell	to	see	your	own	environment	variables

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Stack	Structure	
on	a	New	
Program	Start

10

Null-terminated
environment	variable	strings

Null-terminated
command-line	arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future	stack	frame	for
main

environ
(global	var)

Bottom	of	stack

argv
(in	%rsi)

envp
(in	%rdx)

Stack	frame	for	
libc_start_main

argc
(in	%rdi)

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L20: Processes II, Virtual Memory I

exit:		Ending	a	process

v void exit(int status)
§ Explicitly	exits	a	process

• Status	code:		0	is	used	for	a	normal	exit,	nonzero	for	abnormal	exit

v The	return statement	from	main() also	ends	a	
process	in	C
§ The	return	value	is	the	status	code

11

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Processes

v Processes	and	context	switching
v Creating	new	processes

§ fork(),	exec*(),	and	wait()

v Zombies

12

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Zombies

v A	terminated	process	still	consumes	system	resources
§ Various	tables	maintained	by	OS
§ Called	a	“zombie”	(a	living	corpse,	half	alive	and	half	dead)

v Reaping is	performed	by	parent	on	terminated	child
§ Parent	is	given	exit	status	information	and	kernel	then	
deletes	zombie	child	process

v What	if	parent	doesn’t	reap?
§ If	any	parent	terminates	without	reaping	a	child,	then	the	
orphaned	child	will	be	reaped	by	init process	(pid of	1)
• Note:	on	recent	Linux	systems,	init has	been	renamed	systemd

§ In	long-running	processes	(e.g. shells,	servers)	we	need	
explicit reaping

13

CSE351, Summer 2020L20: Processes II, Virtual Memory I

wait:		Synchronizing	with	Children

v int wait(int *child_status)
§ Suspends	current	process	(i.e. the	parent)	until	one	of	its	
children	terminates

§ Return	value	is	the	PID	of	the	child	process	that	terminated
• On	successful	return,	the	child	process	is	reaped

§ If	child_status != NULL,	then	the	*child_status
value	indicates	why	the	child	process	terminated
• Special	macros	for	interpreting	this	status	– see		man wait(2)

v Note: If	parent	process	has	multiple	children,	wait
will	return	when	any of	the	children	terminates
§ waitpid can	be	used	to	wait	on	a	specific	child	process

14

CSE351, Summer 2020L20: Processes II, Virtual Memory I

wait:		Synchronizing	with	Children

15

void fork_wait() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible	output:
HC
HP
CT
Bye

Infeasible	output:
HP
CT
Bye
HC

CSE351, Summer 2020L20: Processes II, Virtual Memory I

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

Example:		Zombie

v ps shows	child	process	as	
“defunct”

v Killing	parent	allows	child	to	be	
reaped	by	init

16

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",

getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n",

getpid());
while (1); /* Infinite loop */

}
} forks.c

CSE351, Summer 2020L20: Processes II, Virtual Memory I

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Example:

v Child	process	still	active	even	
though	parent	has	terminated

v Must	kill	explicitly,	or	else	will	
keep	running	indefinitely

17

void fork8() {
if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1); /* Infinite loop */

} else {
printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

}
} forks.c

Non-terminating
Child

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Process	Management	Summary
v forkmakes	two	copies	of	the	same	process		(parent	&	child)

§ Returns	different	values	to	the	two	processes

v exec* replaces	current	process	from	file	(new	program)
§ Two-process	program:

• First	fork()
• if (pid	==	0)	{	/*	child	code	*/ }	else {	/*	parent	code	*/ }

§ Two	different	programs:
• First	fork()
• if (pid	==	0)	{	execv(…)	}	else {	/*	parent	code	*/ }

v wait or	waitpid used	to	synchronize	parent/child	execution	
and	to	reap	child	process

18

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Roadmap

19

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Virtual	Memory	(VM*)

v Overview	and	motivation
v VM	as	a	tool	for	caching
v Address	translation
v VM	as	a	tool	for	memory	management
v VM	as	a	tool	for	memory	protection

20
*Not	to	be	confused	with	“Virtual	Machine”	which	is	a	whole	other	thing.

Warning: Virtual	memory	is	pretty	complex,	
but	crucial	for	understanding	how	processes	

work	and	for	debugging	performance

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Memory	as	we	know	it	so	far…	is	virtual!
v Programs	refer	to	virtual	memory	addresses

§ movq (%rdi),%rax

§ Conceptually	memory	is	just	a	very	large	array	of	bytes
§ System	provides	private	address	space	to	each	process

v Allocation:		Compiler	and	run-time	system
§ Where	different	program	objects	should	be	stored
§ All	allocation	within	single	virtual	address	space

v But…
§ We	probably don’t	have	2w bytes	of	physical	memory	
§ We	certainly don’t	have	2w bytes	of	physical	memory

for	every	process
§ Processes	should	not	interfere	with	one	another

• Except	in	certain	cases	where	they	want	to	share	code	or	data
21

0xFF······F

0x00······0

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Problem	1:		How	Does	Everything	Fit?

22

64-bit	virtual addresses	can	address
several	exabytes

(18,446,744,073,709,551,616	bytes)

Physical main	memory	offers
a	few	gigabytes

(e.g. 8,589,934,592	bytes)

?

1	virtual	address	space	per	process,	
with	many	processes…

(Not	to	scale;	physical memory	would	be	smaller	
than	the	period	at	the	end	of	this	sentence	compared	
to	the	virtual address	space.)

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Problem	2:		Memory	Management

23

Physical	main	memory

What	goes	
where?

stack
heap

.text

.data
…

Process	1
Process	2
Process	3
…
Process	n

x

Each	process	has…
We	have	multiple	
processes:

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Problem	3:		How	To	Protect

24

Physical	main	memory

Process	i

Process	j

Problem	4:		How	To Share?
Physical	main	memory

Process	i

Process	j

CSE351, Summer 2020L20: Processes II, Virtual Memory I

How	can	we	solve	these	problems?
v “Any	problem	in	computer	science	can	be	solved	by	adding	

another	level	of	indirection.” – David	Wheeler,	inventor	of	the	subroutine

v Without	Indirection

v With	Indirection

25

What	if	I	want	to	move	Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Indirection
v Indirection:		The	ability	to	reference	something	using	a	name,	

reference,	or	container	instead	of	the	value	itself.	A	flexible	
mapping	between	a	name	and	a	thing	allows	changing	the	
thing	without	notifying	holders	of	the	name.
§ Adds	some	work	(now	have	to	look	up	2	things	instead	of	1)
§ But	don’t	have	to	track	all	uses	of	name/address	(single	source!)

v Examples:
§ Phone	system: cell	phone	number	portability
§ Domain	Name	Service	(DNS): translation	from	name	to	IP	address
§ Call	centers: route	calls	to	available	operators,	etc.
§ Dynamic	Host	Configuration	Protocol	(DHCP): local	network	address	

assignment

26

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Indirection	in	Virtual	Memory

27

v Each	process	gets	its	own	private	virtual	address	space
v Solves	the	previous	problems!

Physical	memory

Virtual	memory

Virtual	memory

Process	1

Process	𝑛

mapping

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Address	Spaces

v Virtual	address	space: Set	of	N = 2$ virtual	addr
§ {0,	1,	2,	3,	…,	N-1}

v Physical	address	space: Set	of	M = 2𝑚 physical	addr
§ {0,	1,	2,	3,	…,	M-1}

v Every	byte	in	main	memory	has:
§ one	physical	address	(PA)
§ zero,	one,	or	more virtual	addresses	(VAs)

28

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Mapping
v A	virtual	address	(VA)	can	be	mapped	to	either	physical	

memory	or	disk
§ Unused	VAs	may	not	have	a	mapping
§ VAs	from	different processes	may	map	to	same	location	in	memory/disk

29

Process	2’s	Virtual	
Address	Space

Physical	
Memory

Disk

Process	1’s	Virtual	
Address	Space

“Swap	Space”

CSE351, Summer 2020L20: Processes II, Virtual Memory I

A	System	Using	Physical	Addressing

30

v Used	in	“simple”	systems	with	(usually)	just	one	process:
§ Embedded	microcontrollers	in	devices	like	cars,	elevators,	and	digital	

picture	frames

0:
1:

M-1:

Main	memory

CPU

2:
3:
4:
5:
6:
7:

Physical	address	(PA)

Data	(int/float)

8: ...

0x4

CSE351, Summer 2020L20: Processes II, Virtual Memory I

A	System	Using	Virtual	Addressing

31

v Physical	addresses	are	completely	invisible	to	programs
§ Used	in	all	modern	desktops,	laptops,	servers,	smartphones…
§ One	of	the	great	ideas	in	computer	science

0:
1:

M-1:

Main	memory

MMU

2:
3:
4:
5:
6:
7:

Physical	address
(PA)

Data	(int/float)

8: ...
CPU

Virtual	address
(VA)

CPU	Chip

0x40x4100

Memory	Management	Unit

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Why	Virtual	Memory	(VM)?
v Efficient	use	of	limited	main	memory	(RAM)

§ Use	RAM	as	a	cache	for	the	parts	of	a	virtual	address	space
• Some	non-cached	parts	stored	on	disk
• Some	(unallocated)	non-cached	parts	stored	nowhere

§ Keep	only	active	areas	of	virtual	address	space	in	memory
• Transfer	data	back	and	forth	as	needed

v Simplifies	memory	management	for	programmers
§ Each	process	“gets”	the	same	full,	private	linear	address	space

v Isolates	address	spaces	(protection)
§ One	process	can’t	interfere	with	another’s	memory

• They	operate	in	different	address	spaces
§ User	process	cannot	access	privileged	information

• Different	sections	of	address	spaces	have	different	permissions

32

CSE351, Summer 2020L20: Processes II, Virtual Memory I

VM	and	the	Memory	Hierarchy

v Think	of virtual	memory as	array	of	N = 2𝑛 contiguous	bytes
v Pages of	virtual	memory	are	usually	stored	in	physical	

memory,	but	sometimes	spill	to	disk
§ Pages	are	another	unit	of	aligned	memory	(size	is	P = 2𝑝 bytes)
§ Each	virtual	page	can	be	stored	in	any physical	page	(no	fragmentation!)

33

VP	0
VP	1

VP	2n-p-1

Virtual	memory

Unallocated

Unallocated

0

2n-1

PP	2m-p-1

Physical	memory
Empty

Empty

PP	0
PP	1

Empty

2m-1

0

Vi
rt
ua
l	p
ag
es
	(V

P'
s)

Disk

Physical	pages	(PP's)

“Swap	Space”

CSE351, Summer 2020L20: Processes II, Virtual Memory I

or: Virtual	Memory	as	DRAM	Cache	for	Disk

v Think	of virtual	memory as	an	array	of	N = 2𝑛 contiguous	
bytes	stored	on	a	disk

v Then	physical	main	memory	is	used	as	a	cache for	the	
virtual	memory	array
§ These	“cache	blocks”	are	called	pages	(size	is	P = 2𝑝 bytes)

34

PP	2m-p-1

Physical	memory

Empty

Empty

Uncached

VP	0
VP	1

VP	2n-p-1

Virtual	memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP	0
PP	1

Empty
Cached

0

N-1
M-1

0

Virtual	pages	(VPs)	
“stored	on	disk”

Physical	pages	(PPs)	
cached	in	DRAM

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Memory	Hierarchy:		Core	2	Duo

35

DiskMain	
Memory

L2	
unified	
cache

L1	
I-cache

L1	
D-cache

CPU Reg

2	B/cycle8	B/cycle16	B/cycle 1	B/30	cyclesThroughput:
Latency: 100	cycles14	cycles3	cycles millions

~4	MB

32	KB

~8	GB ~500	GB

Not	drawn	to	scale	

Miss	Penalty	
(latency)

33x

Miss	Penalty	
(latency)
10,000x

SRAM
Static	Random	Access	Memory

DRAM
Dynamic	Random	Access	Memory

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Virtual	Memory	Design	Consequences
v Large	page	size:		typically	4-8	KiB	or	2-4	MiB

§ Can be	up	to	1	GiB	(for	“Big	Data”	apps	on	big	computers)
§ Compared	with	64-byte	cache	blocks

v Fully	associative
§ Any	virtual	page	can	be	placed	in	any	physical	page
§ Requires	a	“large”	mapping	function	– different	from	CPU	caches

v Highly	sophisticated,	expensive	replacement	algorithms	in	OS
§ Too	complicated	and	open-ended	to	be	implemented	in	hardware

v Write-back rather	than	write-through
§ Really don’t	want	to	write	to	disk	every	time	we	modify	something	in	

memory
§ Some	things	may	never	end	up	on	disk	(e.g. stack	for	short-lived	process)

36

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Why	does	VM	work	on	RAM/disk?
v Avoids	disk	accesses	because	of	locality

§ Same	reason	that	L1	/	L2	/	L3	caches	work

v The	set	of	virtual	pages	that	a	program	is	“actively”	
accessing	at	any	point	in	time	is	called	its	working	set
§ If	(working	set	of	one	process ≤	physical	memory):

• Good	performance	for	one	process	(after	compulsory	misses)

§ If	(working	sets	of	all	processes >	physical	memory):
• Thrashing: Performance	meltdown where	pages	are	swapped	
between	memory	and	disk	continuously	(CPU	always	waiting	or	
paging)

• This	is	why	your	computer	can	feel	faster	when	you	add	RAM

37

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Summary

v Virtual	memory	provides:
§ Ability	to	use	limited	memory	(RAM)	across	multiple	
processes

§ Illusion	of	contiguous	virtual	address	space	for	each	process
§ Protection	and	sharing	amongst	processes

38

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Detailed	examples:
v Consecutive	forks
v wait() example
v waitpid() example

39

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Example:		Two	consecutive	forks

40

void fork2() {
printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

}
printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible	output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible	output:
L0
Bye
L1
Bye
L1
Bye
Bye

CSE351, Summer 2020L20: Processes II, Virtual Memory I

Example:		Three	consecutive	forks

v Both	parent	and	child	can	continue	forking

41

void fork3() {
printf("L0\n");
fork();
printf("L1\n");
fork();
printf("L2\n");
fork();
printf("Bye\n");

} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

CSE351, Summer 2020L20: Processes II, Virtual Memory I

wait() Example

v If	multiple	children	completed,	will	take	in	arbitrary	order
v Can	use	macros	WIFEXITED	and	WEXITSTATUS	to	get	

information	about	exit	status

42

void fork10() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

CSE351, Summer 2020L20: Processes II, Virtual Memory I

waitpid():		Waiting	for	a	Specific	Process

pid_t waitpid(pid_t pid,int &status,int options)

§ suspends	current	process	until	specific	process	terminates
§ various	options	(that	we	won’t	talk	about)

43

void fork11() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

