W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Well I'm having trouble opening

Processes ll, rving s oo Tne IOE. AT

Skype, everyone really... . i niaig Dtg bo\;)st the
™) a bit...
Virtual Memory |

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

OK, here's an extro. 4 gigs.
Make sure you share it around,
\ there aren't any more slots left

Amy Xu
Callum Walker
Sam Wolfson

Tim Mandzyuk

So? What did he say? Will he

[He told you
give us some more RAM? to get lost

http://rebrn.com/re/bad-chrome-1162082/

CommitStrip.com

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Administrivia
«» Questions doc: https://tinyurl.com/CSE351-8-7

—_———

+» hw18 due Monday (8/10) — 10:30am

» hwi9 is optional pot &7 credd =
N\ e N
= Can complete it at any point before the quarter ends

= Practice with virtual memory concepts

\/‘_—/_\/\ To—
= Lab 4 due Wednesday (8/12) — 11:59pm

= All about caches! \
\/_/\/—

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

: a3 rk_ter ==0
(C wesle eW ey fo s

(G e o parenYs Cocteo -t == gié

[

Noize,,

Fork Example

void forkl () {
int x = 1;
pid t fork ret = EEEEil;
if (fork ret == 0) /oM Y
printf ("Child has x = %d\n", ++x);
else // posen’
printf ("Parent has x = %d\n", --x);
rprintf("Bye from process %d with x = %d\n", getpid(), x):;

}]

Both processes continue/start execution after fork

= Child starts at instruction after the call to fork (storing into pid)

Can’t predict execution order of parent and child

| G —

Both processes start with x =1

= Subsequent changes to x are independent
(Vg W S U Ly .

Shared open files: stdout is the same in both parent and child
r‘_

Y

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Modeling £fork with Process Graphs

+« A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program

= Each vertex is the execution of a statement e

" a — b means a happens before b -— R
= Edges can be labeled with current value of variables

= printf vertices can be labeled with output

= Each graph begins with a vertex with no inedges

« Any topological sort of t sponds to a feasible

total ordering

= Total ordering of vertices where all edges point from left to right

I

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory |

Fork Example: Possible Output

CSE351, Summer 2020

void forkl () {
int x = 1;
pid t fork ret = fork();
if (fork ret == 0)
printf ("Child has x =
else
printf ("Parent has x = %d\n",
printf ("Bye from process $d with x =

(ST’\." ko
Y\ (_)39 (ol

$d\n", ++x);

—=X);
sd\n",

getpid (), Xx);

O

C
Child Bye
prlntf prE%tf

Gk @4
"X axﬁﬁ&ﬁ*NQ

x=0 Pasint Bye
>@
--x prlntf prlnt

xX=2

%

Nos ?9’)'375\L:

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Polling Question [Proc ll] D e eeecess oot

cc’f’a‘

+ Are the following sequences of outputs possible? e

bl
" Vote at http://pollev.com/pbjones Seq1:[} Seq2: D

void nestedfork () | 1,0 SO L0
printf ("LO\n") ;
if (fork() == 0) L1 \ Bye

{
printf ("L1\n"); Bye 7 L1

if (forky) == 0) {
printf ("L2\n") ; Bye 3 L2

J Bye 4 Bye
} N2
o L2 & Bye
A A.

[B. No Yes &

C. Yes No
D. Yes Yes
E. We’re lost...

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Note: the return values of fork and}

FO rk-EXEC exec* should be checked for errors

« fork-exec model:

= fork () creates a copy of the current process

— —
"= exec* () replaces the current process’ code and address

“space with the code for a different program
- Whole family of exec calls — see exec (3) and execve (2)

// Example arguments: path="/usr/bin/1s",
// argv/[0]="/usr/bin/1s", argv/[1]="-ahl", argv[2]=NULL
void fork exec(char *path, char *argv[]) {
pid t fork ret = fork();
if (fork ret != 0) { //P,ka
printf ("Parent: created a child %d\n", fork ret);
) else { /[\\\b
printf ("Child: about to exec a new program\n");
\ execv (path, argv);

}
printf ("This line printed by parent only!\n");

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

3 \ 5 S\etl

whe e (U&J hos nﬂ""q_ufir) %_

Exec-ing a new program A gt Y

34AY

Lot 'iu‘— % Lewstd) execled)]
(55tm4 90 il
P yehot 3

Very high-level diagram of what

happens when you run the (6"“&“,[&)
. command “1s” in a Linux shell:

Data SW\\ +« Thisis the loading part of CALL!
Code: /usr/bin/bash

Stack

— | Fork()\

, parent ‘ VAN GN\[’;}'\}

0&65
Stack 1

exec* ()
>

Heap

Data Data
Code: /usr/bin/bash ‘ Code: /usr/bin/Is

 —

—

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

it ma‘m(‘m‘f argc, char* “;‘)VU) This is extra
execve Example of ciaine | (non-testable)

argumé?“ f f\‘ argw-.en‘h wh projfum material

Execute "[usr/bln/ls —1 lab4" in child process using current
environment:

rgc] = NULL
] +—> "lab4”
] _ > "—_]"
myargv [0] +~> "/usr/bin/1ls"
amyargv — 'Lh
(povst

Grro\\/_; Q—F Pc.m"}ers enVP [l’l] — NULL ls’/\'r‘»f\s \—\'\era\\s

To string S envp [n—1] —> "PWD=/homes/iws/rea"

myargv[arg

) myargv[Z
[1

[0

(argc ==

myargwv

<; . envp [0] —> "USER=rea"
environ =

if ((pid = fork()) == 0) { /* Child runs program */
if (execve (myargv([0], myargv, environ) < 0) {
printf ("$s: Command not found.\n", myargv[0]);
exit (1)

}

Run thelprinten_v)command in a Linux shell to see your own environment variables

W UNIVERSITY of WASHINGTON

Stack Structure
on a New
Program Start

L20: Processes I, Virtual Memory |

Bottom of stack

Null-terminated
environment variable strings

Null-terminated
. ﬁg‘mmgpqs—une arg strings

envp[n] == NULL

envp[n—-1]

envp [0] &

argv[argc] = NULL

argv[argc—-1]

argv[0]

Stack frame for
libc start main

Future stack frame for
main

CSE351, Summer 2020

This is extra
(non-testable)
material

environ
 (global var)

envp
(in $rdx)

<& 9°rAi = Gra C

st — arg\V

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory |

CSE351, Summer 2020

exit: Ending a process

+ vold exit (int status)

= Explicitly exits a process

- Status code: 0 is used for a normal exit, nonzero for abnormal exit

_— A~

-

+ The return statement frommain () also ends a

-/L_’-’—\

. \/‘__,
process in C

" The return value is the status code
W OR] main S 3

o< (D] — = et O,

; %

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Processes

+ Processes and context switching

» Creating new processes
" fork(),exec* (),andwait ()

« Zombies

——

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

6""’6\'\ (/Ou""\.‘— AeCe5%ec] lv
Zombies L?“‘*‘Q Complaiely 1S
\6 U,\,J(L> o- ?WC""!’ wWhen ¢

—

| A, Cimio\e
« A terminated Process still consumes system resources

——

= Various tables maintained by OS

—_—

= Called a “zombie” (a living corpse, half alive and half dead)
S

+» Reaping is performed by parent on terminated child

= Parentis given exit status information and kernel then

deletes zombie child process

+» What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid of 1)

- Note: on recent Linux systems, init has been renamed systemd

= |n long-running processes (e.g. shells, servers) we need
explicit reaping

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

wait: Synchronizing with Children

+ int wait (int *child status)

= Suspends current process (i.e. the parent) until one of its
children terminates o

= Return value is the PID of the child process that terminated
« On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status
value indicates why the child process terminated

~

-—_
- Special macros for interpreting this status — see manwait (2)
—
-

+» Note: If parent process has multiple children, wait
will return when any of the children terminates

" waitpid can be used to wait on a specific child process
<

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

wait: Synchronizing with Children

void fork wait () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {
printf ("HP: hello from parent\n");

wait(&child status);
printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;
} forks.c

L \¢ HC

>
printf

Feasible output: Infeasible output:
HC HP
HP CT
CmA—
R HP A~ CT Bye
o —>0—

> > >e 3 HC
fork printf wait printf ye
—— A~

W UNIVERSITY of WASHINGTON

Example: Zombie

")‘) Qwsh\fé“
< ren”
o U Qfaw‘v"’j’

linux> ./forks 7 &
[1] 6639
Running Parent,
Terminating Child,
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated

6639
06640

PID =
PID =

linux> ps
PID TTY
6585 ttyp9
6642 ttyp9

L20: Processes I, Virtual Memory |

forks <defunct>

void fork7 () {
if (fork() == 0) {
/* Child */
printf ("Terminating Child,
getpid());
exit (0);
} else {
printf ("Running Parent, PID = %d\n",
getpid());
(1); /* Infinite loop */

(rmrer\"' ersists

PID = %d\n",

while

forks.c

CSE351, Summer 2020

ps shows child process as
“defunct” £om‘ole

Killing parent allows child to be
reaped by init
=

W UNIVERSITY of WASHINGTON

L20:

Processes Il, Virtual Memory |

Example:
Non-terminating

Child

void fork8 () {
if (fork() == 0) {
/* Child */
printf ("Running Child,
getpid());
while (1); /* Infinite loop */
} else { R— child persisTs
printf ("Terminating Parent,
getpid());
exit (0) ;

PID

d\n",

PID $d\n",

forks.c

linux> ./forks 8
Terminating Parent,
Running Child, PID
linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9
linux> kill
linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

PID
6676

TIME
:00:00
:00:06
:00:00

CMD
tcsh
forks

s

6675

e

Child process still active even

though parent has terminated
P e

Must kill explicitly, or else will
keep running indefinitely

0‘0

CSE351, Summer 2020

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Process Management Summary

fork makes two copies of the same process (parent & child)

-_— .
= Returns different values to the two processes

+ exec* replaces current process from file (new program)

= Two-process program:
« First fork ()
- if (pid == 0) { /* child code */} else { /* parent code */}

= Two different programs: .
T ——— —_ | =
+ First fork () Lot &

- if (pid == 0) { execv(...) } else { /* parent code */}

» walt or waitpid used to synchronize parent/child execution
and to reap child process

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs

~S & Memory & caches

Assembly get_mpg: Processes

_ pushg S$rbp
Ianguage' movq srsp, Srbp

Virtual memory
- Mremory allocation
pPopgq srbp Javavs. C

ret
|

\ 4

Machine 0111010000011000

code: 100011010000010000000010 \
' 1000100111000010 Q

110000011111101000011111 Windows 10 05X Yosermite mtler
] [|

Computer
system:

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Virtual Memory (VM¥*)

Overview and motivation

VM as a tool for caching

Address translation
VM as a tool for memory management
VM as a tool for memory protection

Warning: Virtual memory is pretty complex,
but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Memory as we know it so far... is virtual!

+» Programs refer to virtual memory addresses

) —
" movqg (%rdi),srax

= Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system

= Where different program objects should be stored

= Al| allocation within single virtual address space
& ¢ (a@ 3"'6’5

b 1) weed | Willior
2 1t b
o ove 271 Lytes OV
*- ~o Wo’“j
= We probably don’t have 2% bytes of physical memory

CEEEEEE—

" We certainly don’t have 2" bytes of physical memory

for every process a~ 9 ©9-320
e ——————

" Processes should not interfere with one another
f e —— ———

- Except in certain cases where they want to share code or data

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)

g
Y ptial!)
\,@N-L

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

1 virtual address space per process,
N

with many processes...
e ————,

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Problem 2: Memory Management

Physical main memory

We have multiple
processes:

' Process 1 f/

Each process has...

stack

Process 2 E_\
Process 3 €ap What goes
X .text

< where?
15 Process n .data

L

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Problem 3: How To Protect

Physical main memory

Process 1
/>
Process j

Problem 4: How To Share?

Physical main memory

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

How can we solve these problems?

+ “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

Without Indirection

« W.ith Indirection

QS

NewThing

What if | want to move Thing?

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Indirection

+ Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

— ® Adds some work (now have to look up 2 things instead of 1)

}+ = But don’t have to track all uses of name/address (single source!)
[= oy T —_— >

+» Examples:

O+ u Phone system: cell phone number portability

4(
\ . . .
3 = Domain Name Service (DNS): translation from name to IP address
g‘

Y
A}

= (Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

mapping - v

Virtual memory \

Process n L\,_/‘fA
VA
» Each process gets its own privates\ZirtuaISaddress space

» Solves the previous problems!

W UNIVERSITY of WASHINGTON . Processes II, Virtual Memory | CSE351, Summer 2020

Address Spaces

» Virtual address space: Set of N = 2™ virtual addr
= {0,1,2,3,.. N-1}

« Physical address space: Set of M = 2™ physical addr
“10 12 3, .. M1J mzlog, M

nNZ \932‘ N

+ Every byte in main memory has:
/___

= one physical address (PA)

= zero, one, or more virtual addresses (VAs)

VK M,w\%/'p\{

(\,0“ U/L,V/S 0w C265¢5
Yo' MAS A

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory |

CSE351, Summer 2020

Mapping

A virtual address (VA) can be mapped to either physical

memory or disk
-

= Unused VAs may not have a mapping

= VAs from different processes may map to same location in memory/disk
L\i\owx~>

Process 1’s Virtual
Address Space

Physical

L&

Process 2’s Virtual
Address Space

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

A System Using Physical Addressing

Main memory

Physical address (P%
Ox4

0:
1:
2:
3

4.
5:
6:
7:
8:

Data (int/float)

Used in “simple” systems with (usually) just one process:

= Embedded microcontrollers in devices like cars, elevators, and digital
”
picture frames

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

A System Using Virtual Addressing

Main memory

CPU Chip

Virtual address Physical address
(VA) = (PA)

O0x4

0:
1:
2:
3:
> 4.
5:
6:
7:
8:

Memory Management Unit

Data (int/float)

+» Physical addresses are completely invisible to programs
E—

= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

[-

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

—

= Use RAM as a cache for the parts of a virtual address space
« Some non-cached parts stored on disk

S————————=

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

« Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space
+ |solates address spaces (protection)

F
" One process can’t interfere with another’s memory
- They operate in different address spaces

= User process cannot access privileged information

- Different sections of address spaces have different permissions

A

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

VM and the Memory Hierarchy

+ Think of virtual memory as array of N = 2" contiguous bytes
+ Pages of virtual memory are usually stored in physical

memory, but sometimes spill to disk o= \m‘p
= Pages are another unit of aligned memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

~— <0 T
0 Empty PPO
VP 0 | Unallocated |

VP 1

Virtual memory Physical memory k wo.éfzgg

Fee |

PP 1

Empty

Unallocated Empty
74

(s,dd) so3ed |eaisAyd

PP 2m-p-1 >

j “Swap Space”

-’\/"/\/

Virtual pages (VP's)

VP 2.1

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

or: Virtual Memory as DRAM Cache for Disk

% Think of virtual memory as an array of N = 2™ contiguous
bytes stored on a disk

+» Then physical main memory is used as a cache for the
virtual memory array

"= These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0
VP O | Unallocated
0

VP 1| Cached
Uncached \
Unallocated

Cached
Uncached

Cached PP 2m-p-1
VP 2n-p-1 Uncached i

N-1

Virtual pages (VPs) Physical pages (PPs)
“stored on disk” cached in DRAM

nor o Urialdy Wwad oCrurS

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Mewrbnory Hierarchy: Core 2 Duo Not drawn to scale
~C

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory

A A
~4vg) ! ~8 GB ‘

unified | £4—% Memory &
cache 99 Yo S¥orl

& O DAY SALRE T""
i

Reg Rl uig pod 8

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions

D Jantr W-\—'I‘.G::k T 1

(a5 \oO\en & [odent
qw'i ¥ pCLwig

Miss Penalty Miss Penalty
(latency) (latency)

33x 10,000x
MQ Y Ll (90_ G o e

¢ e s“}',s—cﬂl-gd
00_0\/\2_ Cﬂ\(f%'o S \40\"2-"‘ pfncesg*- I

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Virtual Memory Desigh Consequences
%sw $(£—°:C‘s L
Large page size: typically 4-8 KiB or 2-4 MiB
. Can be up to 1 GiB (for “Big Data” apps on big computers)

QE—

= Compared with 64-byte cache blocks

Fully associative (phyv““\ Moy 4 o Single sty
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

Highly sophisticated, expensive replacement algorithms in OS

—
" Too complicated and open-ended to be implemented in hardware

e

Write-back rather than write-through

= Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

L ——— e

36

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Why does VM work on RAM/disk?

+» Avoids disk accesses because of locality

= Same reasonthatll1/L2 /L3 caches work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

t

= |f (working set of one process < physical memory):

- Good performance for one process (after compulsory misses)
ZC}B A~ \09-200 Waf) woltWhinrg (lroma &eloS
= |f (wor

—

. o~ .
ing sets o rocesses > physical memory):

Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when you add RAM

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

= |llusion of contiguous virtual address space for each process

" Protection and sharing amongst processes

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

BONUS S

Detailed examples:

« Consecutive forks
» walt () example

» wailtpid () example

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Example: Two consecutive forks

Bye
0
void fork2() { printf
printf ("LO\n") ; L1l Bye
> —0
fork () ; pri%tf printf
printf ("L1\n");
fork () ;

printf ("Bye\n") ;

Bye
@
printf

LO L1l Bye
o >@ »@ > —>@
printf fork printf fork printf

Feasible output: Infeasible output:
LO LO

L1 Bye

Bye L1

Bye Bye

L1 L1

Bye Bye

Bye Bye

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

Example: Three consecutive forks

+ Both parent and child can continue forking

void fork3() ({ _Bye
printf ("LO\n") ; Bye
fork () ;
printf ("L1\n") ; ‘
fork () ;

printf ("L2\n") ;
fork () ;

printf ("Bye\n") ; Bye

A

Bye
Bye

Bye
Bye

Bye

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

wait () Example

+ If multiple children completed, will take in arbitrary order

Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forklO0 () {
pid t pid[N];
int i;
int child status;
for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (1 = 0; 1 < N; 1i++) {
pid t wpid = wait (&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid):;

W UNIVERSITY of WASHINGTON L20: Processes Il, Virtual Memory | CSE351, Summer 2020

waitpid(): Waiting for a Specific Process

pid t waitpid(pid tpid, int &status,intoptions)
= suspends current process until specific process terminates

= various options (that we won’t talk about)

void forkll () {
pid t pid[N];
int i;
int child status;
for (1 = 0; 1 < N; 1i++)
if ((pid[1] = fork()) == 0)
exit (100+i); /* Child */
for (1 = 0; 1 < N; 1i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));

else
printf ("Child %d terminated abnormally\n", wpid);

