
CSE351, Summer 2020L19: Processes

Processes
CSE	351	Summer	2020
Instructor: Teaching	Assistants:
Porter	Jones Amy	Xu

Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

http://xkcd.com/1854/

CSE351, Summer 2020L19: Processes

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-5

v hw17	due	Friday	(8/7)	– 10:30am
v hw18	due	Monday	(8/10)	– 10:30am

v Unit	Summary	2	Due	Tonight!	(8/5)	– 11:59pm	

v Lab	4	due	Wednesday	(8/12) – 11:59pm	
§ All	about	caches!

2

CSE351, Summer 2020L19: Processes

Roadmap

3

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L19: Processes

Leading	Up	to	Processes

v System	Control	Flow
§ Control	flow
§ Exceptional	control	flow
§ Asynchronous	exceptions	(interrupts)
§ Synchronous	exceptions	(traps	&	faults)

4

CSE351, Summer 2020L19: Processes

Control	Flow

v So	far: we’ve	seen	how	the	flow	of	control	changes	
as	a	single	program	executes

v Reality: multiple	programs	running	concurrently
§ How	does	control	flow	across	the	many	components	of	the	
system?

§ In	particular:	More	programs	running	than	CPUs

v Exceptional	control	flow is	basic	mechanism	used	for:
§ Transferring	control	between	processes and	OS
§ Handling	I/O and	virtual	memory within	the	OS
§ Implementing	multi-process	apps	like	shells	and	web	servers
§ Implementing	concurrency

5

CSE351, Summer 2020L19: Processes

Control	Flow

v Processors	do	only	one	thing:
§ From	startup	to	shutdown,	a	CPU	simply	reads	and	executes	
(interprets)	a	sequence	of	instructions,	one	at	a	time

§ This	sequence	is	the	CPU’s	control	flow (or	flow	of	control)

6

<startup>
instr1
instr2
instr3
…
instrn
<shutdown>

Physical	control	flow

time

CSE351, Summer 2020L19: Processes

Altering	the	Control	Flow
v Up	to	now,	two	ways	to	change	control	flow:

§ Jumps	(conditional	and	unconditional)
§ Call	and	return
§ Both	react	to	changes	in	program	state

v Processor	also	needs	to	react	to	changes	in	system	state
§ Unix/Linux	user	hits	“Ctrl-C”	at	the	keyboard
§ User	clicks	on	a	different	application’s	window	on	the	screen
§ Data	arrives	from	a	disk	or	a	network	adapter
§ Instruction	divides	by	zero
§ System	timer	expires

v Can	jumps	and	procedure	calls	achieve	this?
§ No	– the	system	needs	mechanisms	for	“exceptional” control	flow!

7

CSE351, Summer 2020L19: Processes

Java	Digression
v Java	has	exceptions,	but	they’re	something	different

§ Examples:		NullPointerException,	MyBadThingHappenedException,	…
§ throw statements
§ try/catch statements	(“throw	to	youngest	matching	catch	on	the	call-

stack,	or	exit-with-stack-trace	if	none”)

v Java	exceptions	are	for	reacting	to	(unexpected)	program	state
§ Can	be	implemented	with	stack	operations	and	conditional	jumps
§ A	mechanism	for	“many	call-stack	returns	at	once”	
§ Requires	additions	to	the	calling	convention,	but	we	already	have	the	

CPU	features	we	need

v System-state	changes	on	previous	slide	are	mostly	of	a	
different	sort	(asynchronous/external	except	for	divide-by-
zero)	and	implemented	very	differently

8

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L19: Processes

Exceptional	Control	Flow
v Exists	at	all	levels	of	a	computer	system

v Low	level	mechanisms
§ Exceptions	

• Change	in	processor’s	control	flow	in	response	to	a	system	event	
(i.e. change	in	system	state,	user-generated	interrupt)

• Implemented	using	a	combination	of	hardware	and	OS	software

v Higher	level	mechanisms
§ Process	context	switch

• Implemented	by	OS	software	and	hardware	timer

§ Signals
• Implemented	by	OS	software
• We	won’t	cover	these	– see	CSE451	and	CSE/EE474

9

CSE351, Summer 2020L19: Processes

Exceptions
v An	exception is	transfer	of	control	to	the	operating	system	(OS)	

kernel	in	response	to	some	event (i.e. change	in	processor	state)

§ Kernel	is	the	memory-resident	part	of	the	OS
§ Examples:		division	by	0,	page	fault,	I/O	request	completes,	Ctrl-C

v How	does	the	system	know	where	to	jump	to	in	the	OS?
10

User	Code OS	Kernel	Code

exception
exception	processing	by	
exception	handler,	then:
• return	to	current_instr,
• return	to	next_instr,	OR
• abort

current_instr
next_instr

event	

CSE351, Summer 2020L19: Processes

Exception	Table
v A	jump	table	for	exceptions	(also	called	Interrupt	Vector	Table)

§ Each	type	of	event	has	a	unique	
exception	number	𝑘

§ 𝑘 =	index	into	exception	table
(a.k.a interrupt	vector)

§ Handler	𝑘 is	called	each	time
exception	𝑘 occurs

11

0
1
2 ...

n-1

Exception
Table

code	for		
exception	handler	0

code	for	
exception	handler	1

code	for
exception	handler	2

code	for	
exception	handler	n-1

...

Exception	
numbers

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L19: Processes

Exception	Table	(Excerpt)

12

Exception Number Description Exception	Class

0 Divide	error Fault

13 General	protection	fault Fault

14 Page	fault Fault

18 Machine	check Abort

32-255 OS-defined Interrupt	or	trap

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L19: Processes

Leading	Up	to	Processes

v System	Control	Flow
§ Control	flow
§ Exceptional	control	flow
§ Asynchronous	exceptions	(interrupts)
§ Synchronous	exceptions	(traps	&	faults)

13

CSE351, Summer 2020L19: Processes

Asynchronous Exceptions	(Interrupts)
v Caused	by	events	external	to	the	processor

§ Indicated	by	setting	the	processor’s	interrupt	pin(s)	(wire	into	CPU)
§ After	interrupt	handler	runs,	the	handler	returns	to	“next”	instruction

v Examples:
§ I/O	interrupts

• Hitting	Ctrl-C	on	the	keyboard
• Clicking	a	mouse	button	or	tapping	a	touchscreen
• Arrival	of	a	packet	from	a	network
• Arrival	of	data	from	a	disk

§ Timer	interrupt
• Every	few	milliseconds,	an	external	timer	chip	triggers	an	interrupt
• Used	by	the	OS	kernel	to	take	back	control	from	user	programs

14

CSE351, Summer 2020L19: Processes

Synchronous Exceptions
v Caused	by	events	that	occur	as	a	result	of	executing	an	

instruction:
§ Traps

• Intentional:	transfer	control	to	OS	to	perform	some	function
• Examples:		system	calls,	breakpoint	traps,	special	instructions
• Returns	control	to	“next”	instruction

§ Faults
• Unintentional but	possibly	recoverable	
• Examples:		page	faults,	segment	protection	faults,	integer	divide-by-zero	
exceptions

• Either	re-executes	faulting	(“current”)	instruction	or	aborts
§ Aborts

• Unintentional and	unrecoverable
• Examples:		parity	error,	machine	check	(hardware	failure	detected)
• Aborts	current	program

15

CSE351, Summer 2020L19: Processes

System	Calls

v Each	system	call	has	a	unique	ID	number
v Examples	for	Linux	on	x86-64:

16

Number Name Description

0 read Read	file

1 write Write	file

2 open Open	file

3 close Close	file

4 stat Get	info about	file

57 fork Create	process

59 execve Execute	a	program

60 _exit Terminate	process

62 kill Send	signal	to	process

CSE351, Summer 2020L19: Processes

Traps	Example:		Opening	File
v User	calls		open(filename, options)
v Calls	__open function,	which	invokes	system	call	instruction	syscall

17

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2
e5d7e: 0f 05 syscall # return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User	code OS	Kernel	code

Exception

Open	file
Returns

syscall
cmp

¢ %rax contains	syscall number
¢ Other	arguments	in	%rdi,	

%rsi,	%rdx,	%r10,	%r8,	%r9
¢ Return	value	in	%rax
¢ Negative	value	is	an	error	

corresponding	to	negative	
errno

CSE351, Summer 2020L19: Processes

Fault	Example:		Page	Fault	w/Swapped	Page
v User	writes	to	memory	location
v That	portion	(page)	of	user’s	memory	

is	currently	swapped	out	(on	disk)

v Page	fault	handler	must	load	page	into	physical	memory
v Returns	to	faulting	instruction:		mov is	executed	again!

§ Successful	on	second	try
18

int a[1000];
int main () {

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	code OS	Kernel	code

exception:	page	fault
Check	to	see	if	page	
is	swapped,	if	so,	
create	page	and	
load	into	memory

returns

movl
handle_page_fault:

CSE351, Summer 2020L19: Processes

Fault	Example:		Invalid	Memory	Reference

v Page	fault	handler	detects	invalid	address
v Sends	SIGSEGV signal	to	user	process
v User	process	exits	with	“segmentation	fault”

19

int a[1000];
int main() {

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	Process OS

exception:	page	fault

detect	invalid	address
movl

signal	process

handle_page_fault:

CSE351, Summer 2020L19: Processes

Summary

v Exceptions
§ Events	that	require	non-standard	control	flow
§ Generated	externally	(interrupts)	or	internally	(traps	and	
faults)

§ After	an	exception	is	handled,	one	of	three	things	may	
happen:
• Re-execute	the	current	instruction
• Resume	execution	with	the	next	instruction
• Abort	the	process	that	caused	the	exception

20

CSE351, Summer 2020L19: Processes

Processes

v Processes	and	context	switching
v Creating	new	processes

§ fork(),	exec*(),	and	wait()

v Zombies

21

CSE351, Summer 2020L19: Processes

Process	1

What	is	a	process?

22

CPU

Registers %rip

Memory

Stack

Heap

Code

Data

Disk

Chrome.exe

It’s	an	illusion!

CSE351, Summer 2020L19: Processes

What	is	a	process?

v Another	abstraction in	our	computer	system
§ Provided	by	the	OS
§ OS	uses	a	data	structure	to	represent	each	process
§ Maintains	the interface between	the	program	and	the	
underlying	hardware	(CPU	+	memory)

v What	do	processes have	to	do	with	exceptional	
control	flow?
§ Exceptional	control	flow	is	the	mechanism the	OS	uses	to	
enable	multiple	processes	to	run	on	the	same	system

v What	is	the	difference	between:
§ A	processor?		A	program?		A	process?

23

CSE351, Summer 2020L19: Processes

Processes

v A	process is	an	instance	of	a	running	program
§ One	of	the	most	profound	ideas	in	computer	science
§ Not	the	same	as	“program”	or	“processor”

v Process	provides	each	program	with	two	key	
abstractions:
§ Logical	control	flow

• Each	program	seems	to	have	exclusive	use	of	the	CPU
• Provided	by	kernel	mechanism	called	context	switching

§ Private	address	space
• Each	program	seems	to	have	exclusive	use	of	main	memory
• Provided	by	kernel	mechanism	called	virtual	memory

24

CPU

Registers

Memory

Stack
Heap

Code
Data

CSE351, Summer 2020L19: Processes

What	is	a	process?

25

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process	2

Process	3

Process	4Process	1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

It’s	an	illusion!

CSE351, Summer 2020L19: Processes

What	is	a	process?

26

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process	1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

Process	2

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process	3

“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

Process	4

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Operating
System

It’s	an	illusion!

CSE351, Summer 2020L19: Processes

Multiprocessing:		The	Illusion

v Computer	runs	many	processes	simultaneously
§ Applications	for	one	or	more	users

• Web	browsers,	email	clients,	editors,	…

§ Background	tasks
• Monitoring	network	&	I/O	devices

27

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

CSE351, Summer 2020L19: Processes

Multiprocessing:		The	Reality

v Single	processor	executes	multiple	processes	concurrently
§ Process	executions	interleaved,	CPU	runs	one	at	a	time
§ Address	spaces	managed	by	virtual	memory	system	(later	in	course)
§ Execution	context (register	values,	stack,	…) for	other	processes	saved	in	

memory 28

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

…

CSE351, Summer 2020L19: Processes

Multiprocessing

v Context	switch
1) Save	current	registers	in	memory

29

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

…

CSE351, Summer 2020L19: Processes

Multiprocessing

v Context	switch
1) Save	current	registers	in	memory
2) Schedule	next	process	for	execution

30

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

…

CSE351, Summer 2020L19: Processes

Multiprocessing

31

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

…

v Context	switch
1) Save	current	registers	in	memory
2) Schedule	next	process	for	execution
3) Load	saved	registers	and	switch	address	space

CSE351, Summer 2020L19: Processes

Multiprocessing:		The	(Modern)	Reality

v Multicore	processors
§ Multiple	CPUs	(“cores”)	on	single	chip
§ Share	main	memory	(and	some	of	the	

caches)
§ Each	can	execute	a	separate	process

• Kernel	schedules	processes	to	cores
• Still constantly	swapping	processes

32

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

Stack
Heap

Code
Data

Saved	
registers

…

CPU

Registers

CSE351, Summer 2020L19: Processes

Concurrent	Processes

v Each	process	is	a	logical	control	flow	
v Two	processes	run	concurrently (are	concurrent)	if	
their	instruction	executions	(flows)	overlap	in	time
§ Otherwise,	they	are	sequential

v Example:		(running	on	single	core)
§ Concurrent:		A	&	B,	A	&	C
§ Sequential:		B	&	C

33

Process	A Process	B Process	C

time

Assume	only	one CPU

CSE351, Summer 2020L19: Processes

User’s	View	of	Concurrency

v Control	flows	for	concurrent	processes	are	physically	
disjoint	in	time
§ CPU	only	executes	instructions	for	one	process	at	a	time

v However,	the	user	can	think	of concurrent	processes	
as	executing	at	the	same	time,	in	parallel

34

Assume	only	one CPU

Process	A Process	B Process	C

tim
e

Process	A Process	B Process	C

User	View

CSE351, Summer 2020L19: Processes

Context	Switching
v Processes	are	managed	by	a	shared chunk	of	OS	code	

called	the	kernel
§ The	kernel	is	not	a	separate	process,	but	rather	runs	as	part	of	a	user	

process

v In	x86-64	Linux:
§ Same	address	in	each	process	

refers	to	same	shared	
memory	location

35

Assume	only	one CPU

CSE351, Summer 2020L19: Processes

Context	Switching
v Processes	are	managed	by	a	shared chunk	of	OS	code	

called	the	kernel
§ The	kernel	is	not	a	separate	process,	but	rather	runs	as	part	of	a	user	

process

v Context	switch	passes	control	flow	from	one	process	to	
another	and	is	performed	using	kernel	code

36

Process	A Process	B

user	code

kernel	code

user	code

kernel	code

user	code

context	switch

context	switch

time

Exception

Assume	only	one CPU

CSE351, Summer 2020L19: Processes

Processes

v Processes	and	context	switching
v Creating	new	processes

§ fork() ,	exec*(),	and	wait()

v Zombies

37

CSE351, Summer 2020L19: Processes

Process	2

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

Creating	New	Processes	&	Programs

38

Chrome.exe

Process	1

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE351, Summer 2020L19: Processes

Creating	New	Processes	&	Programs

v fork-exec	model	(Linux):
§ fork() creates	a	copy	of	the	current	process
§ exec*() replaces	the	current	process’	code	and	address	
space	with	the	code	for	a	different	program
• Family:		execv,	execl,	execve,	execle,	execvp,	execlp

§ fork() and	execve() are	system	calls

v Other	system	calls	for	process	management:
§ getpid()
§ exit()

§ wait(),	waitpid()

39

CSE351, Summer 2020L19: Processes

fork:		Creating	New	Processes

v pid_t fork(void)
§ Creates	a	new	“child”	process	that	is	identical to	the	calling	“parent”	

process,	including	all	state	(memory,	registers,	etc.)
§ Returns	0	to	the	child process
§ Returns	child’s	process	ID	(PID) to	the	parent	process

v Child	is	almost identical	to	parent:
§ Child	gets	an	identical	

(but	separate)	copy	of	the	
parent’s	virtual	address	
space

§ Child	has	a	different	PID	
than	the	parent

v fork is	unique	(and	often	confusing)	because	it	is	called	once
but	returns	“twice”

40

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

CSE351, Summer 2020L19: Processes

Understanding	fork()

41

Process	X				(parent;	PID	X)
pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process	Y			(child;	PID	Y)
pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

CSE351, Summer 2020L19: Processes

Understanding	fork()

42

pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

fork_ret =	Y

Process	X				(parent;	PID	X)
pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process	Y			(child;	PID	Y)
pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

fork_ret =	0

CSE351, Summer 2020L19: Processes

Understanding	fork()

43

pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process	X				(parent;	PID	X)
pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process	Y			(child;	PID	Y)
pid_t fork_ret = fork();
if (fork_ret == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

hello from parent hello from child

Which	one	appears	first?

fork_ret =	Y fork_ret =	0

CSE351, Summer 2020L19: Processes

Fork	Example

v Both	processes	continue/start	execution	after	fork
§ Child	starts	at	instruction	after	the	call	to	fork (storing	into	pid)

v Can’t	predict	execution	order	of	parent	and	child
v Both	processes	start	with	x =	1

§ Subsequent	changes	to	x are	independent

v Shared	open	files:		stdout is	the	same	in	both	parent	and	child

44

void fork1() {
int x = 1;
pid_t fork_ret = fork();
if (fork_ret == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

CSE351, Summer 2020L19: Processes

Modeling	fork with	Process	Graphs

v A	process	graph	is	a	useful	tool	for	capturing	the	partial	
ordering	of	statements	in	a	concurrent	program
§ Each	vertex	is	the	execution	of	a	statement
§ a→ bmeans	a happens	before	b
§ Edges	can	be	labeled	with	current	value	of	variables
§ printf vertices	can	be	labeled	with	output
§ Each	graph	begins	with	a	vertex	with	no	inedges

v Any	topological	sort	of	the	graph	corresponds	to	a	feasible	
total	ordering
§ Total	ordering	of	vertices	where	all	edges	point	from	left	to	right

45

CSE351, Summer 2020L19: Processes

Fork	Example:		Possible	Output

46

void fork1() {
int x = 1;
pid_t fork_ret = fork();
if (fork_ret == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

CSE351, Summer 2020L19: Processes

Summary

v Processes
§ At	any	given	time,	system	has	multiple	active	processes
§ On	a	one-CPU	system,	only	one	can	execute	at	a	time,	but	
each	process	appears	to	have	total	control	of	the	processor

§ OS	periodically	“context	switches”	between	active	processes
• Implemented	using	exceptional	control	flow

v Process	management
§ fork:		one	call,	two	returns
§ execve:		one	call,	usually	no	return
§ wait or	waitpid:		synchronization
§ exit:		one	call,	no	return

47

