W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Processes
CSE 351 Summer 2020

Instructor: Teaching Assistants:
Porter Jones Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

REFRESH TYPE EXAMPLE SHORTCUTS EFFECT
SOFT REFRESH ~ GMAIL [REFRESH] BUTION REQUESTS UPDATE. WITHIN JAVASCRIPT

NORMAL REFRESH F5, CTRER, 3R REFRESHES PAGE
HARD REFRESH CTRLFS, CTRE), 38R REFRESHES PAGE INCLUDING CACHED FILES
HARDER REFRESH CTRL-{}-HYPER-ESC-R-F5 REMOTELY (YCLES POWER To DATACENTER

HARDEST REFRESH (TRe383E0# RTSFO" | INTERNET STARTS OVER FROM ARPANET

http://xkcd.com/1854/

W UNIVERSITY of WASHINGTON CSE351, Summer 2020

Administrivia
«» Questions doc: https://tinyurl.com/CSE351-8-5

%+ hw17 due Friday (8/7) — 10:30am
%+ hw18 due Monday (8/10) — 10:30am

+ Unit Summary 2 Due Tonight! (8/5) — 11:59pm

+» Lab 4 due Wednesday (8/12) — 11:59pm

= All about caches!

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs

~S & Memory & caches

Assembly get_mpg: Processes

_ pushg S$rbp
Ianguage' movq srsp, Srbp

Virtual memory
Memory allocation

popq srbp Java vs. C
ret i

A 4

Machine 0111010000011000 \/
, 100011010000010000000010
code: "8

1000100111000010 A

=\

110000011111101000011111 Windows 10 05X Yosermite mtler
] [|

v

Computer
system:

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Leading Up to Processes

% System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Control Flow

+ So far: we’ve seen how the flow of control changes
as a single program executes

Reality: multiple programs running concurrently

®" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

Exceptional control flow is basic mechanism used for:
= Transferring control between processes and OS
= Handling I/0 and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
Implementing concurrency

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

5 o\ ome (PO
Control Flow Asprms

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
instr,
instr,
instry

instr,,
<shutdown>

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Altering the Control Flow

+ Up to now, two ways to change control flow:

= Jumps (conditional and unconditional)
= Call and return

= Both react to changes in program state

Processor also needs to react to changes in system state
Unix/Linux user hits “Ctrl-C” at the keyboard
User clicks on a different application’s window on the screen
Data arrives from a disk or a network adapter
Instruction divides by zero
System timer expires

Can jumps and procedure calls achieve this?

= No —the system needs mechanisms for “exceptional” control flow!

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

This is extra

Java Digression (non-testable)

material

+» Java has exceptions, but they’'re something different
Examples: NullPointerException, MyBadThingHappenedException, ...

throw statements

try/catch statements (“throw to youngest matching catch on the call-

stack, or exit-with-stack-trace if none”)
g,_y\.c»g e ol M%So‘_%

+ Java exceptions are for reacting to (unexpected) program state
" Can be implemented with stack operations and conditional jumps
"= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+ System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Exceptional Control Flow B e Socs on bt

+ Exists at all levels of a computer system

« Low level mechanisms
= Exceptions

- Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

- Implemented using a combination of hardware and OS software

+~ Higher level mechanisms
" Process context switch
- Implemented by OS software and hardware timer
= Signals
- Implemented by OS software
- We won’t cover these — see CSE451 and CSE/EE474

W UNIVERSITY of WASHINGTON L19: Processes

CSE351, Summer 2020

Exceptions

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
= Kernel is the memory-resident part of the OS

= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

event —— current_instr exception .

next_instr | exception processing by
exception handler, then:
e return to current_instr,

* return to next_instr, OR
* abort

+ How does the system know where to jump to in the OS?

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

This is extra

Exception Table (non-testable)

material

+ A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique
exception number k

= k =index into exception table
(a.k.a interrupt vector)

code for
= Handler k is called each time exception handler 0

exception k occurs Exception

code for
exception handler 1

“
[
'/

code for
exception handler 2

.\

code for

Exception exception handler n-1

numbers

W UNIVERSITY of WASHINGTON

L19: Processes

Exception Table (Excerpt)

Exception Number
0

13

14

18

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

CSE351, Summer 2020

This is extra
(non-testable)
material

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

W UNIVERSITY of WASHINGTON L19: Processes

Leading Up to Processes

« System Control Flow
= Control flow
= Exceptional control flow
Asynchronous exceptions (interrupts)
Synchronous exceptions (traps & faults)

CSE351, Summer 2020

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Asynchronous Exceptions (Interrupts)

+» Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

+~ Examples:
= |/O interrupts
Hitting Ctrl-C on the keyboard
« Clicking a mouse button or tapping a touchscreen

- Arrival of a packet from a network
« Arrival of data from a disk

" Timer interrupt
Every few milliseconds, an external timer chip triggers an interrupt
Used by the OS kernel to take back control from user programs

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Synchronous Exceptions

+» Caused by events that occur as a result of executing an
instruction:

" Traps

- Intentional: transfer control to OS to perform some function

- Examples: system calls, breakpoint traps, special instructions N
. . r] ¢ ¢ &~
- Returns control to “next” instruction (‘\ Ly (O tnakC dil whee

052\ M>
= Faults e awglt

- Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

- Either re-executes faulting (“current”) instruction or ahorts
T e Y- ¢ N Yol
. AbOI‘tS ' (@OOVUW | U‘\’JH

!
- Unintentional and unrecoverable

- Examples: parity error, machine check (hardware failure detected)
- Aborts current program

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

System Calls 7,55 05 pnd b

+ Each system call has a unique ID number
+» Examples for Linux on x86-64:

Number Name Description
read Read file

write Write file

close Close file

0
1
2 open Open file
3
4

stat Get info about file
57 fork Create process
59 execve Execute a program
60 ex1it Terminate process

62 kill Send signal to process

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Traps Example: Opening File

+ Usercalls open (filename, options)

+~ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 < open>:
e5d79: b8 02 00 00 00 mov 5$0x2,%eax # open is syscall 2
ebd7e: 0f 05 syscall # return value in %rax

e5d80: 48 3d 01 £0 f£f ff cmp SOxXfffffffffffff001, Srax

ebdfa: c3 retq

User code OS5 Kernel code Srax contains syscall number

Other arguments in $rdi,

syscally Exception $rsi, srdx, $rl0, $r8, $r9

»

cmp . -
\l Open flle Return Value IN srax
Returns Negative value is an error

corresponding to negative
errno

y

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Fault Example: Page Fault w/Swapped Page

User writes to memory location int a[1000];
int main () {

That portion (page) of user’s memory 2001 = 4
3 = 13;

is currently swapped out (on disk) }

80483b7: c7 05 10 94 04 08 0d movl $0xd, 0x8049d10

W faddcesS

User code OS Kernel code ot i d_j
gnus\\B

exception: page fault handle_page_fault:

Check to see if page
is swapped, if so,
create page and
load into memory

returns

Page fault handler must load page into physical memory

Returns to faulting instruc:ciO/ mov is executed again!

= Successful on second try

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Fault Example: Invalid Memory Reference

int a[1000];
int main() {

al5000] = 13;
}

80483b7: c7 05 60 €3 04 08 0d movl $0xd, 0x804e360

User Process 0OS

l exception: page fault

handle_page_fault:

movl

, detect invalid address
signal process

Page fault handler detects invalid address
Sends SIGSEGV signal to user process
User process exits with “segmentation fault”

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Summary

+» Exceptions
= Events that require non-standard control flow

= Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:
- Re-execute the current instruction
- Resume execution with the next instruction

- Abort the process that caused the exception

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Processes

% Processes and context switching

» Creating new processes
" fork(),exec* (),andwait ()

« Zombies

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

What is a process? It’s an illusion!

\

Process 1

Memory

Stack

Heap

Data

Code

CPU

Registers

Chrome.exe

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

What is a process?

+» Another abstraction in our computer system
"= Provided by the OS
= OS uses a data structure to represent each process

" Maintains the interface between the program and the
underlying hardware (CPU + memory)

+» What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

+» What is the difference between:
= A processor? A program? A process?

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Processes

« A process is an instance of a running program
®= One of the most profound ideas in computer science

= Not the same as “program” or “processor”

+ Process provides each program with two key

Memory

abstractions:
Stack

= |ogical control flow
- Each program seems to have exclusive use of the CPU g:g
- Provided by kernel mechanism called context switching Code

= Private address space
CPU
- Each program seems to have exclusive use of main memory

- Provided by kernel mechanism called virtual memory

Registers

W UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2020

What is a process?

It’s an illusion!

Computer

Process 3
Process 2

Process 1

Process 4

”CPU"

“Memory”
Stack
”CPU”

Heap
Data
Code

MCPUH llcpuil

@

Disk

/Applications/

Chrome.exe Slack.exe

PowerPoint.exe

W UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2020

What is a process?

It’s an illusion!
Computer

Process 3
Process 2

Process 1

Process 4

”CPU"

“Memory”
Stack
”CPU”

Heap
Data
Code

llcpull HCPUH
Operating

System

Disk

/Applications/

Chrome.exe Slack.exe

PowerPoint.exe

W UNIVERSITY of WASHINGTON

L19: Processes

Multiprocessing: The lllusion

Memory

Stack

Memory

Heap

Stack

Data

Heap

Code

Data

Code

CPU

Registers

CPU

Registers

+» Computer runs many processes simultaneously

Memory

Stack

Heap

Data

Code

CPU

Registers

= Applications for one or more users

- Web browsers, email clients, editors, ...

= Background tasks

- Monitoring network & I/O devices

CSE351, Summer 2020

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Multiprocessing: The Reality

Memory

Stack Stack

Heap Heap
Data Data
Code Code

. Saved Saved
registers : registers registers

CPU

Registers

+ Single processor executes multiple processes concurrently
® Process executions interleaved, CPU runs one at a time
= Address spaces managed by virtual memory system (later in course)

= Execution context (register values, stack, ...) for other processes saved in
memory

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Multiprocessing

Memory

Stack Stack
Heap Heap
Data Data
Code Code

- Saved Saved
registers : registers registers

{}:

CPU

Registers

KX I 2025
Context switch ekt ‘/“‘W\g;ﬁaoe{ﬁ—

1) Save current registers in memory { e w2k

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Multiprocessing

Stack : : Stack
Heap : : Heap
Data : E Data
Code E E Code

Saved : : Saved
registers : registers : registers

CPU

Registers

« Context switch

1) Save current registers in memory
2) Schedule next process for execution O Ae_cideb

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Multiprocessing

Stack : : Stack
Heap : : Heap
Data : E Data
Code E E Code

Saved : : Saved
registers : registers : registers

¥

CPU

Registers

« Context switch

1) Save current registers in memory

2) Schedule next process for execution
) p . oot Whest o255
3) Load saved registers and switch address space \eS+ ol

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Multiprocessing: The (Modern) Reality

Stack
Heap
Data
Code

> - : Saved
registers D registers : registers

U 1] CPY 1w Multicore processors
Registers | |- | | Registers Multiple CPUs (“cores”) on single chip

Share main memory (and some of the

caches)

Each can execute a separate process
Kernel schedules processes to cores

- Still constantly swapping processes

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Assume only one CPU

Concurrent Processes

+ Each process is a logical control flow

+» Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

= Otherwise, they are sequential

+» Example: (running on single core)
" Concurrent: A&B,A&C

= Sequential: B&C _ Process A Process B Process C

(&

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Assume only one CPU

User’s View of Concurrency

+ Control flows for concurrent processes are physically
disjoint in time
" CPU only executes instructions for one process at a time

+» However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C Process A Process B Process C

User View

q

™~
) e
CiWls YA HweR

ek

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Assume only one CPU

Context Switching

+ Processes are managed by a shared chunk of OS code
called the kernel
" The kernel is not a separate process, but rather runs as part of a user

process
P, Memory
Kernel virtual memory T '"V'3|b|% to
0xFFFF FFFF FFFF user code

User stack

In x86-64 Linux: (created at run time)

T %rsp (stack pointer)

= Same address in each process A
refers to same shared Memory mapped region for
. hared librari
memory location See e

!

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Assume only one CPU

Context Switching

+ Processes are managed by a shared chunk of OS code
called the kernel

" The kernel is not a separate process, but rather runs as part of a user
process

+ Context switch passes control flow from one process to
another and is performed using kernel code

Process A

user code
kernel code } context switch

user code

kernel code } context switch

user code

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Processes

+ Processes and context switching

+» Creating new processes
" fork() ,exec* (),andwait ()

« Zombies

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Creating New Processes & Programs

4 4
Process 1 Process 2

“Memory” “Memory”

Stack ? Stack
Heap Heap
Data Data
Code Code

(lCPU” ';' HCPU”

Registers Registers

exec™* ()

Chrome.exe

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Creating New Processes & Programs

+ fork-exec model (Linux):
= fork () creates a copy of the current process
= exec* () replaces the current process’ code and address
space with the code for a different program

- Family: execv, execl, execve, execle, execvp, execlp

" fork () and execve () are system calls \
\—aﬁﬁ“mnma)

HorS

% Other system calls for process management:
" getpid()
" exit ()

" walt (),waitpid()

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

fork: Creating New Processes

+ pid t fork(void)
" Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)
= Returns 0 to the child process
= Returns child’s process ID (PID) to the parent process

« Child is almost identical to parent:
® Child gets an identical pid t pid = fork();
(butsepar.ate) copyofthe |if (pid == 0) { f/cmang
parent’s virtual address printf ("hello from child\n");
space } else { //popenit-

= Child has a different PID printf ("hello from parent\n");
}

than the parent

+ forkisunique (and often confusing) because it is called once
but returns “twice”

W UNIVERSITY of WASHINGTON

L19: Processes

Understanding fork ()

»

Process X (parent; PID X)

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

}

CSE351, Summer 2020

Process Y (child; PID Y)

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

W UNIVERSITY of WASHINGTON

L19: Processes

Understanding fork ()

»

Process X (parent; PID X)

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

fork ret=Y

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

»

CSE351, Summer 2020

Process Y (child; PID Y)

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

fork ret=0

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Understanding fork ()

Process X (parent; PID X) Process Y (child; PIDY)

» pid t fork ret = fork(); » pid _t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {

printf ("hello from parent\n"); printf ("hello from parent\n");
} }

fork ret=Y fork ret=0
pid t fork ret = fork(); pid t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else ({ } else {

printf ("hello from parent\n"); printf ("hello from parent\n");
} }

hello from parent hello from child

Which one appears first?
on - dedres mf WS

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

— che\ld

% . |
Fork Example x 73 <« [+ 2 |

void forkl () {
int x = 1;
pid t fork ret = fork();
if (fork ret == 0) (/AU
printf ("Child has x = %d\n", ++x);
else /] pacen
printf ("Parent has x = %d\n", --x);
rprintf("Bye from process %d with x = %d\n", getpid(), x):;

Both processes continue/start execution after fork

= Child starts at instruction after the call to fork (storing into pid)
Can’t predict execution order of parent and child
Both processes start with x =1

= Subsequent changes to x are independent

Shared open files: stdout is the same in both parent and child

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Modeling £fork with Process Graphs

+« A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program
= Each vertex is the execution of a statement _ N
U f%/ eans a happens before b /::—-47?'[“@
Edges can be labeled with current value of variables
printf vertices can be labeled with output

Each graph begins with a vertex with no inedges

« Any topological sort of the graph corresponds to a feasible
total ordering

= Total ordering of vertices where all edges point from left to right

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Fork Example: Possible Output

void forkl () {
int x = 1;
pid t fork ret = fork();
if (fork ret ==)//0¥J}1
printf ("Child has x = %d\n", ++x);
else //porent
printf ("Parent has x = %d\n", --x);
printf ("Bye from process %d with x = %d\n", getpid(), x);

C s C

cW\t x—2 child Bye
19 prf%tf prf%tf

V 3%

Parent Bye

»— »®
printf printf

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2020

Summary

< Processes

= At any given time, system has multiple active processes

"= On aone-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes

- Implemented using exceptional control flow

+ Process management
" fork: one call, two returns
" execve: one call, usually no return
" wait orwaitpid: synchronization
" oxit: onecall, noreturn

