
CSE351, Summer 2020L18: Caches IV

Caches	IV
CSE	351	Summer	2020

Instructor: Teaching	Assistants:
Porter	Jones Amy	Xu

Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

http://xkcd.com/908/

CSE351, Summer 2020L18: Caches IV

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-8-3

v hw16	due	Wednesday	(8/5)	– 10:30am
v hw17	due	Friday	(8/7)	– 10:30am

v Lab	4	due	Wednesday	(8/12) – 11:59pm	
§ All	about	caches!

v Unit	Summary	2	Due	Wednesday	(8/5)	– 11:59pm	

2

CSE351, Summer 2020L18: Caches IV

What	about	writes?
v Multiple	copies	of	data	may	exist:

§ multiple	levels	of	cache	and	main	memory

v What	to	do	on	a	write-hit?
§ Write-through: write	immediately	to	next	level
§ Write-back: defer	write	to	next	level	until	line	is	evicted	(replaced)

• Must	track	which	cache	lines	have	been	modified	(“dirty	bit”)

v What	to	do	on	a	write-miss?
§ Write	allocate: (“fetch	on	write”)	load	into	cache,	then	execute	the	

write-hit	policy
• Good	if	more	writes	or	reads	to	the	location	follow

§ No-write	allocate: (“write	around”)	just	write	immediately	to	next	level

v Typical	caches:
§ Write-back	+	Write	allocate,	usually
§ Write-through	+	No-write	allocate,	occasionally

3

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

4

Note:	While	unrealistic,	this	example	assumes	that	all	requests	have	
offset	0	and	are	for	a	block’s	worth	of	data.

0xBEEFCache: G01

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

There	is	only	one	set	in	this	tiny	cache,	
so	the	tag	is	the	entire	block	number!

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

5

0xBEEFCache: G01

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F)

Step	1:	Bring	F into	
cache

Write	Miss!

Not	valid	x86,	just	using	block	num instead
of	full	byte	address	to	keep	the	example	simple

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

6

0xCAFECache: F01

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F)

Step	1:	Bring	F into	
cache

Step	2:	Write	
0xFACE to	cache	
only	and	set	the	
dirty	bit

Write	Miss

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

7

0xFACECache: F11

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F)

Step	1:	Bring	F into	
cache

Step	2:	Write	
0xFACE to	cache	
only	and	set	the	
dirty	bit

Write	Miss

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

8

0xFACECache: F11

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F)

Step:	Write	
0xFEED to	cache	
only	(and	set	the	
dirty	bit)

2)	mov $0xFEED, (F)
Write	Miss Write	Hit!

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

9

0xFEEDCache: F11

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F) 2)	mov $0xFEED, (F)
Write	Miss Write	Hit

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

10

0xFEEDCache: F11

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F) 2)	mov $0xFEED, (F) 3)	mov (G), %ax
Write	Miss Write	Hit Read	Miss!

Step	1:	Write	F back	
to	memory	since	it	
is	dirty

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

11

0xFEEDCache: F11

Valid Dirty Tag Block	Contents

Memory:
0xFEED

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov $0xFACE, (F) 2)	mov $0xFEED, (F) 3)	mov (G), %ax
Write	Miss Write	Hit Read	Miss

Step	1:	Write	F back	
to	memory	since	it	
is	dirty

Step	2:	Bring	G into	
the	cache	so	that	
we	can	copy	it	into	
%ax

0 G 0xBEEF

CSE351, Summer 2020L18: Caches IV

Cache	Simulator

v Want	to	play	around	with	cache	parameters	and	
policies?		Check	out	our	cache	simulator!
§ https://courses.cs.washington.edu/courses/cse351/cachesim/

v Way	to	use:
§ Take	advantage	of	“explain	mode”	and	navigable	history	to	
test	your	own	hypotheses	and	answer	your	own	questions

§ Self-guided	Cache	Sim	Demo	posted	along	with	Section	6
§ Will	be	used	in	hw17	– Lab	4	Preparation

12

CSE351, Summer 2020L18: Caches IV

Polling	Question	[Cache	IV]

v Which	of	the	following	cache	statements	is	FALSE?
§ Vote	at	http://pollev.com/pbjones

A. We	can	reduce	compulsory	misses	by	decreasing	
our	block	size

B. We	can	reduce	conflict	misses	by	increasing	
associativity

C. A	write-back	cache	will	save	time	for	code	with	
good	temporal	locality	on	writes

D. A	write-through	cache	will	always	match	data	
with	the	memory	hierarchy	level	below	it

E. We’re	lost…

CSE351, Summer 2020L18: Caches IV

Optimizations	for	the	Memory	Hierarchy

v Write	code	that	has	locality!
§ Spatial:		access	data	contiguously
§ Temporal:		make	sure	access	to	the	same	data	is	not	too	far	
apart	in	time

v How	can	you	achieve	locality?
§ Adjust	memory	accesses	in	code (software)	to	improve	miss	
rate	(MR)
• Requires	knowledge	of	both how	caches	work	as	well	as	your	system’s	
parameters

§ Proper	choice	of	algorithm
§ Loop	transformations

14

CSE351, Summer 2020L18: Caches IV

Example:		Matrix	Multiplication

15

C

= ×

A B

ai* b*j

cij

CSE351, Summer 2020L18: Caches IV

Matrices	in	Memory

v How	do	cache	blocks	fit	into	this	scheme?
§ Row	major	matrix	in	memory:

16

Cache	
blocks

COLUMN of	matrix	(blue)	is	spread	
among	cache	blocks	shown	in	red	

CSE351, Summer 2020L18: Caches IV

Naïve	Matrix	Multiply

move along rows of A
for (i = 0; i < n; i++)
move along columns of B
for (j = 0; j < n; j++)
EACH k loop reads row of A, col of B
Also read & write c(i,j) n times
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n+k] * b[k*n+j];

17

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	𝐾 =	64	B	=	8	doubles
§ Cache	size	𝐶 ≪ 𝑛 (much	smaller	than	𝑛)

v Each	iteration:
§ !
" + 𝑛 =

#!
" misses

18

×=

Ignoring	
matrix	c

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	𝐾 =	64	B	=	8	doubles
§ Cache	size	𝐶 ≪ 𝑛 (much	smaller	than	𝑛)

v Each	iteration:
§ !
" + 𝑛 =

#!
" misses

§ Afterwards	in	cache:
(schematic)

19

×=

×=
8	doubles	wide

Ignoring	
matrix	c

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	(Naïve)

v Scenario	Parameters:
§ Square	matrix	(𝑛×𝑛),	elements	are	doubles
§ Cache	block	size	𝐾 =	64	B	=	8	doubles
§ Cache	size	𝐶 ≪ 𝑛 (much	smaller	than	𝑛)

v Each	iteration:
§ !
" + 𝑛 =

#!
" misses

v Total	misses:		!"
#
×𝑛2 = !

#
𝑛3

20

×=

Ignoring	
matrix	c

once	per	product	matrix	element

CSE351, Summer 2020L18: Caches IV

Linear	Algebra	to	the	Rescue	(1)

v Can	get	the	same	result	of	a	matrix	multiplication	by	
splitting	the	matrices	into	smaller	submatrices	
(matrix	“blocks”)

v For	example,	multiply	two	4×4	matrices:

21

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L18: Caches IV

Linear	Algebra	to	the	Rescue	(2)

22

Matrices	of	size	𝑛×𝑛,	split	into	4	blocks	of	size	𝑟 (𝑛=4𝑟)

C22 =	A21B12 +	A22B22 +	A23B32 +	A24B42	 =		åk A2k*Bk2

v Multiplication	operates	on	small	“block”	matrices
§ Choose	size	so	that	they	fit	in	the	cache!
§ This	technique	called	“cache	blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L18: Caches IV

Blocked	Matrix	Multiply

v Blocked	version	of	the	naïve	algorithm:

§ 𝑟 =	block	matrix	size	(assume	𝑟 divides	𝑛 evenly)

23

move by rxr BLOCKS now
for (i = 0; i < n; i += r)
for (j = 0; j < n; j += r)
for (k = 0; k < n; k += r)
block matrix multiplication
for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	𝐾 =	64	B	=	8	doubles
§ Cache	size	𝐶 ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v Each	block	iteration:
§ 𝑟$/8misses	per	block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

24

𝑛/𝑟 blocks𝑟2 elements	per	block,	8	per	cache	block

𝑛/𝑟 blocks	in	row	and	column

Ignoring	
matrix	c

×=

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	𝐾 =	64	B	=	8	doubles
§ Cache	size	𝐶 ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v Each	block	iteration:
§ 𝑟$/8misses	per	block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

§ Afterwards	in	cache
(schematic)

25

𝑛/𝑟 blocks𝑟2 elements	per	block,	8	per	cache	block

𝑛/𝑟 blocks	in	row	and	column

Ignoring	
matrix	c

×=

×=

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	(Blocked)

v Scenario	Parameters:
§ Cache	block	size	𝐾 =	64	B	=	8	doubles
§ Cache	size	𝐶 ≪ 𝑛 (much	smaller	than	𝑛)
§ Three	blocks						(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v Each	block	iteration:
§ 𝑟$/8misses	per	block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

v Total	misses:
§ 𝑛𝑟/4×(𝑛/𝑟)2 = 𝑛3/(4𝑟)

26

𝑛/𝑟 blocks𝑟2 elements	per	block,	8	per	cache	block

𝑛/𝑟 blocks	in	row	and	column

Ignoring	
matrix	c

×=

CSE351, Summer 2020L18: Caches IV

Matrix	Multiply	Visualization

v Here	𝑛 =	100,	𝐶 =	32	KiB,	𝑟 =	30

27

Naïve:

Blocked:

≈	1,020,000
cache	misses

≈	90,000
cache	misses

CSE351, Summer 2020L18: Caches IV

Cache-Friendly	Code

v Programmer	can	optimize	for	cache	performance
§ How	data	structures	are	organized
§ How	data	are	accessed

• Nested	loop	structure
• Blocking	is	a	general	technique

v All	systems	favor	“cache-friendly	code”
§ Getting	absolute	optimum	performance	is	very	platform	
specific
• Cache	size,	cache	block	size,	associativity,	etc.

§ Can	get	most	of	the	advantage	with	generic	code
• Keep	working	set	reasonably	small	(temporal	locality)
• Use	small	strides	(spatial	locality)
• Focus	on	inner	loop	code

28

CSE351, Summer 2020L18: Caches IV

The	Memory	Mountain

29

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size	(bytes)

Re
ad

	th
ro
ug
hp

ut
	(M

B/
s)

Stride	(x8	bytes)

Core	i7	Haswell
2.1	GHz
32	KB	L1	d-cache
256	KB	L2	cache
8	MB	L3	cache
64	B	block	size

Slopes	
of	spatial	
locality

Ridges	
of	temporal	
locality

L1

Mem

L2

L3

Aggressive	
prefetching

CSE351, Summer 2020L18: Caches IV

Learning	About	Your	Machine

v Linux:
§ lscpu

§ ls	/sys/devices/system/cpu/cpu0/cache/index0/
• Example:		cat	/sys/devices/system/cpu/cpu0/cache/index*/size

v Windows:
§ wmic memcache get <query> (all	values	in	KB)
§ Example:		wmic memcache get MaxCacheSize

v Modern	processor	specs:		http://www.7-cpu.com/

30

CSE351, Summer 2020L18: Caches IV

Write-back,	Write	Allocate	Example

0xBEEFCache: G01

Valid Dirty Tag Block	Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1)	mov 0xFACE, F 2)	mov 0xFEED, F 3)	mov G, %ax

CSE351, Summer 2020L18: Caches IV

Cache	Miss	Analysis	Comparison
v Scenario	Parameters:

§ Square	matrix	(𝑛×𝑛)	of	doubles
§ Cache	size	𝐶 ≪ 𝑛 and	three	blocks	(𝑟×𝑟)	fit	into	cache:		3𝑟2 < 𝐶

v Naïve:

v Blocked:

Ignoring	
matrix	c

𝑛/𝑟 blocks

×= 𝑛
𝑟

Scenario	Parameters:
§ Cache	block	size	𝐾 =	64	B	=	8	doubles

×=

CSE351, Summer 2020L18: Caches IV

Exceptions	- Handout
v An	exception is	transfer	of	control	to	the	operating	system	(OS)	

kernel	in	response	to	some	event (i.e. change	in	processor	state)

§ Kernel	is	the	memory-resident	part	of	the	OS
§ Examples:		division	by	0,	page	fault,	I/O	request	completes,	Ctrl-C

v How	does	the	system	know	where	to	jump	to	in	the	OS?

User	Code OS	Kernel	Code

exception
exception	processing	by	
exception	handler,	then:
•
•
•

current_instr
next_instr

event	

CSE351, Summer 2020L18: Caches IV

Notes	Diagrams

34

User	Code OS	Kernel	Code

exception
exception	processing	by	
exception	handler,	then:
• return	to	current_instr,
• return	to	next_instr,	OR
• abort

current_instr
next_instr

event	

