W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Caches IV

CSE 351 Summer 2020

Instructor: Teaching Assistants:
Porter Jones Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

HUH? T ALWAYS THOUGHT THE | HOW? YOURE ON | | SHOULD THE CORD BE \WHAT IF SOMEONE TRIPS ON IT?
CLOUD" whs A HUGE, AMORPHOUS A CPBLE MODEM. | | STRETCHED ACRDSS (WHO WOULD WANT To Do THAT?

NETWORK. OF SERVERS GOMEWHERE. / THE ROOM LIKE THIS? IT SOUNDS UNPLERSANT.
2/ TERES ALOT

OF CooRE. IT | | UH. SOMETIMES PEORE \

YERH, BUT EVERYONE BS HAS TOREACH | | DO STUFF BY ACCIDENT.

~

ELSE. IN THE END, THEYRE AND THE SERVER
ALL GETTING [T HERE. 1S OVER THERE

S N [
oS

http://xkcd.com/908/

I KNOW ANYBODY

SERVER TiME FROM EVERYONE |~ OF CACHING. THE SERVER, S T DONT THINK

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Administrivia
«» Questions doc: https://tinyurl.com/CSE351-8-3

%+ hw16 due Wednesday (8/5) — 10:30am
<+ hw17 due Friday (8/7) — 10:30am

+ Lab 4 due Wednesday (8/12) — 11:59pm

= All about caches!

% Unit Summary 2 Due Wednesday (8/5) — 11:59pm

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

What about writes?

Multiple copies of data may exist:

= multiple levels of cache and main memory

A
What to do on a write-hit? (\)\0‘)"”/\

= Write-through: write immediately to next level
= \Write-back: defer write to next level until line is evicted (replaced)

Lo memnaqg et
Must track which cache lines have been modified (“dirty bit”)\o,,g Lor Wide-loatlK

c oL\
What to do on a write-miss? [Llsc/iake net Aresdy in cacte)

= Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy
- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

k\fwj ‘N aa.ckz>

Typical caches:

o @rite—back + Write allocate, us@ &

= Write-through + No-write allocate, occasionally

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

M55
erte back, Write Allocate Example

Note: While unrealistic, this example assumes that all requests have
offset 0 and are for a block’s worth of data.

Valid Dirty Tag Block Contents

Cache: 11 1|o G OxXBEEF RL

4

There is only one set in this tiny cache,
so the tag is the entire block number!

Block R
Memory: Num :

F OxCAFE

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

Not valid x86, just using block num instead
L offull byte address to keep the example simple

1) mov $SOxFACE, (F)
Write Miss!

Valid Dirty Tag Block Contents
p s CATE

1)‘B’ P —OxBEEF

D%

Step 1: Bring F into
cache

:/

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

1) mov SOxFAC
Write Miss

Valid Dirty Tag ~ Block Contents
1 OxtkC v

1] 107 —OxCAPE—

Step 1: Bring F into
cache

o

Step 2: Write
2V OxFACE to cache

@ only and set the

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

1) mov $SOxFACE, (F)
Write Miss

Valid Dirty Tag Block Contents

1111 F OxFACE

Step 1: Bring F into
cache

Step 2: Write
. OxFACE to cache

OxCAFFE only and set the
. dirty bit

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

i W TXS
Write-back, Write Allocate Example

1) mov $O0xFACE, (F) 2)mov $SOxFEED, (F) .
Write Miss Write Hit! Wes L

AR

\v\yo
Valid Dirty Tag Block Contents ' \o\o‘)‘(‘

1| 2] | F

Step: Write
OxFEED to cache

only (and set the
. dirty bit)

OxCAFE

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

1) mov $SOxFACE, (F) 2)mov $OxFEED, (F)
Write Miss Write Hit

Valid Dirty Tag Block Contents

1 1 F OxXFEED

OxCAFE

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

1) mov SOxFACE, (F) 2)mov S$OxFEED, (F) 3)mov (G), %$ax
Write Miss Write Hit Read Miss!

Valid Dirty Tag Block Contents

1] [1 F OXFEED

@,\;b ‘%‘Q;;(l’j
\o\Dd’\';k; Step 1: Write F back
& I wewd) to memory since it
is dirty

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

1) mov SOxFACE, (F) 2)mov S$OxFEED, (F) 3)mov (G), %$ax
Write Miss Write Hit Read Miss

@oﬂ? Y0 Y a2x’

Valid Dirty Tag Block Contents ?o“’"(

1{1]o0 G éxBEEF) [
Y

N

to memory since it

@ < A Step 1: Write F back
W is dirty

. Step 2: Bring G into
OxFEED the cache so that
e we can copy it into
. Tax

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

® https://courses.cs.washington.edu/courses/cse351/cachesim/

«» Way to use:
= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions
= Self-guided Cache Sim Demo posted along with Section 6
= Will be used in hwl7 — Lab 4 Preparation

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

| 6B 168
(&

Polling Question [Cache IV] <5 \5& e =)

+» Which of the following cache statements is FALSE?
= \/ote at http://pollev.com/pbjones

We can reduce compulsory misses by decreasing
. Ll bloth 8% pwWG O uer wydeS
our block size T . cahe on wins

We can reduce conflict misses by increaﬂang
~

° e ® Tfue'\' ¢ ‘o Lo.-oe_ \0\00"3
associativity UL, ophm? T E cers

A write-back cache will save time for code with
@:e,iuuv\' vd plecks

good temporal locality on writes ar csdy eqivted

. A write-through cache will always match data

with the memory hierarchy level below it ;521“’;’4 l

We’re lost... Ao, omsT Y

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Optimizations for the Memory Hierarchy

+» Write code that has locality!

= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

= Proper choice of algorithm
= Loop transformations

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Example: Matrix Multiplication
ﬁ; O)KO-\'*'AXA’}' B’{‘/D T

C A

U
*

hl

W UNIVERSITY of WASHINGTON L18: Caches IV

Matrices in Memory

«» How do cache blocks fit into this scheme?

"= Row major matrix in memory:

CSE351, Summer 2020

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

W UNIVERSITY of WASHINGTON L18: Caches IV

Naive Matrix Multiply ey wxn

CSE351, Summer 2020

move along rows of A
for (1 = 0; 1 < n; 1++)
move along columns of B
for (J = 0; 7 < n; J++)
EACH k loop reads row of A,
Also read &
for (k 0; k < n; k++)
cl[i*n+j] += a[i*n+k]

write c(i1,7]) n times

* blk*n+t3];

col of B

et Q) cens O ceod

C(i,j) C(i,j) Ali,:)
O O | [

—% —

@ (esd

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Miss Analysis (Naive) [lgnoringJ

matrix c

<« Scenario Parameters:

= Square matrix (nXn), elements are doubles g . \enis

" Cache block size K =64 B=8 doubles e cothe (olotE

Cache size C < n (much smaller than n)
ey ansnmpd™n

\ L3\
. . [} %
« Each iteration:

]
2
9
K
n on X
- §+n ——mlsses
(,Mgw‘n’“‘kﬁ /\

oM Yl v
\sl We ogek +o
‘uMﬂ
nex¥ &
:I \o_ob‘c—- ‘AK’?
veen &V‘

QTWV\ GM 18

(N :‘%—A\W‘*
O

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Miss Analysis (Naive) [IgnoringJ

matrix c

<« Scenario Parameters:

= Square matrix (nXn), elements are doubles
= Cache block size K =64 B =8 doubles

" Cachessize C K n (much smaller than n)

« Each iteration:

n In]
" — 4+ NN = —misses
8 8

= Afterwards in cache:
(schematic) X

8 doubles wide

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Miss Analysis (Naive) [IgnoringJ

matrix c

<« Scenario Parameters:

= Square matrix (nXn), elements are doubles
= Cache block size K =64 B =8 doubles

" Cachessize C K n (much smaller than n)

« Each iteration:

n In]
" — 4+ NN = —misses
8 8

. N 9
+ Total misses: ?an = -n3

'\8

once per product matrix element

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

% Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

| = [An A

A, Az;]' with B defined similarly.

B = [(AllBll +A12821) (AllBIZ + Al?.BZZ)
(A21Bll +A22821) (A21812 + AZZB’ZZ)

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

This is extra
Linear Algebra to the Rescue (2) [(non-testable)J

material

E C13 E A11 :A12 :A13 :A14 B11 :<B12 B13 E

B21 B23 i
Cu A ,A33 ,A34 By, @ Byy

Cus Ay §A42 §A43 EA144 B, Eé B.s

Matrices of size nXn, split into 4 blocks of size r (n=4r)
Cop = ApiBiy + ApBoy + Ay3Bay + AyyByy = 24 Ay By,

+» Multiplication operates on small “block” matrices
" Choose size so that they fit in the cache!
= This technique called [‘cache blocking’| %

W UNIVERSITY of WASHINGTON L18: Caches IV

CSE351, Summer 2020

L’ n,a,’a(""é \oaf5 g Seem

Blocked Matrix Multiply e eCCi ¢l ek ot 13

’J/M\j pat Coshes l
due Yo aSLe5d peties o
+ Blocked version of the naive algorithm:

move by rxr BLOCKS now

for (i = 0; i < n; i += r) Cheose

t 13(\ \O\"C/K
for (J = 0; J < n; j += r) JUO(JM oclke

for (k = 0; k < n; k += 1) matrce S
block matrix multiplication

for (ib = 1i; ib < i+r; 1b++) wor ¥
1p within Lor

for (jb = j; jb < j+r; Jb++) one

\ S o
< mericeS for (kb = k: kb < k+r; kb++) /| ¥le9e

c[ib*n+jyb] += al[ib*n+kb]*b[kb*n+3b];

" r = block matrix size (assume r divides n evenly)

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Miss Analysis (Blocked) ['gno””gJ

matrix c

+» Scenario Parameters:
= Cache block size K =64 B = 8 doubles
" Cache ssize C < n (much smaller than n)
= Three blocks M (rXr) fit into cache: 3r2 < C

lock
r?2 elements per block, 8 per cache block n/r blocks

kX Eacf)/b/lock iteration: M

= 12 /8 misses per block
" 2n/rxr?/8 = nr/4

n/r blocks in row and column

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Miss Analysis (Blocked) ['gno””gJ

matrix c

+» Scenario Parameters:
= Cache block size K =64 B = 8 doubles
" Cache ssize C < n (much smaller than n)
= Three blocks M (rXr) fit into cache: 3r2 < C

lock
r2 elements per block, 8 per cache block n/rioc >

)

kX Eacf)/b/lock iteration: M

= 12 /8 misses per block
" 2n/rxr?/8 = nr/4

X
EEEER)

n/r blocks in row and column

= Afterwards in cache]
(schematic)

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

matrix c

Cache Miss Analysis (Blocked) ['gno””gJ

+» Scenario Parameters:
= Cache block size K =64 B = 8 doubles
" Cache ssize C < n (much smaller than n)
= Three blocks M (rXr) fit into cache: 3r2 < C

n/r blocks

r2elements per block, 8 per cache block

kX Eacf)/b/lock iteration: M

= 12 /8 misses per block
" 2n/rxr?/8 = nr/4

n/r blocks in row and column

=« Total misses: Velore! Dfgn®
" nr/4x(n/r)2 = n3/(4r)

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Matrix Multiply Visualization

+ Heren =100, C =32 KiB, r =30
Naive:

Cache misses: 551888

Blocked:

Cache misses: 53,888

= 1,020,000
cache misses
= 90,000
cache misses

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache-Friendly Code

% Programmer can optimize for cache performance

®= How data structures are organized

" How data are accessed

- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

= Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.

= Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)

- Use small strides (spatial locality)
- Focus on inner loop code

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Core i7 Haswell

The Memory Mountain 21 GHz

32 KB L1 d-cache

256 KB L2 cache
Aggressive ' : 8 MB L3 cache

prefetchinﬁsoo(\ . eaBblocksize

14000 -

12000 -
10000 -
8000 ; Ridges

6000 ;ZCZZ')? oral

4 I o &F when
4000 - ki,rm“) size

2000 - 19 Xl
Slopes 2
. -

-4

of spatial T

. 31 " A.I“l‘[-t-
locality = s3 o 128k
\/ e e - ‘___4"- 512k

2m

(7]
SN
[22]
=
S
e
=]

Q.
=
1]
=]
(]
=
=
=)
e
©
Q
o

Stride (x8 bytes)

Size (bytes) W of « ",_9
Se it

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Learning About Your Machine

+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Example: cat /sys/devices/system/cpu/cpu0/cache/index*/size
+» Windows:
" wmic memcache get <query> (all valuesin KB)

" Example: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Write-back, Write Allocate Example

1) mov OxXFACE, F 2) mov OxXFEED, F 3)mov G, %$ax

Valid Dirty Tag Block Contents

1110 G O0xBEEF

OxCAFE

OxBEEF

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Cache Miss Analysis Comparison ['gnof'”gJ
matrix c

Scenario Parameters:
= Square matrix (nXn) of doubles ® (Cache blocksize K =64 B =8 doubles
" Cache size C < n and three blocks (rXxr) fit into cache: 3r2 < C

< Naive:

A\ J

~
n/r blocks

W UNIVERSITY of WASHINGTON L18: Caches IV CSE351, Summer 2020

Exceptions - Handout

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
= Kernel is the memory-resident part of the OS

= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

event —— current_instr exception .

next_instr | exception processing by
exception handler, then:

+ How does the system know where to jump to in the OS?

W UNIVERSITY of WASHINGTON

Notes Diagrams

User Code

EVeNt ——m——p cyrrent_instr

L18: Caches IV

| OS Kernel Code

exception

next_instr

| » | exception processing by
exception handler, then:
* return to current_instr,
* return to next_instr, OR
* abort

CSE351, Summer 2020

