
CSE351, Summer 2020L17: Caches III

Caches III
CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

CSE351, Summer 2020L17: Caches III

Administrivia

❖ Questions doc: https://tinyurl.com/CSE351-7-31

❖ hw16 due Wednesday (8/5) – 10:30am

❖ Lab 3 due Tonight (7/31) – 11:59pm

▪ You get to write some buffer overflow exploits!

❖ Lab 4 released later today

▪ All about caches!

❖ Unit Summary 2 Due next Wednesday (8/5) – 11:59pm

2

https://tinyurl.com/CSE351-7-31

CSE351, Summer 2020L17: Caches III

Making memory accesses fast!

❖ Cache basics

❖ Principle of locality

❖ Memory hierarchies

❖ Cache organization

▪ Direct-mapped (sets; index + tag)

▪ Associativity (ways)

▪ Replacement policy

▪ Handling writes

❖ Program optimizations that consider caches

3

CSE351, Summer 2020L17: Caches III

Review: Cache Parameters

❖ Block size (K): basic unit of transfer between memory
and the cache, given in bytes (e.g. 64 B).

❖ Cache size (C): Total amount of data that can be stored
in the cache, given in bytes (e.g. 32 KiB).

▪ Must be multiple of block size

▪ Number of blocks in cache is calculated by C/K

❖ Associativity (E): Number of ways blocks can be stored
in a cache set, or how many blocks in each set

❖ Number of sets (S): Number of unique sets that blocks
can be placed into in a cache (calculated as C/K/E).

4

CSE351, Summer 2020L17: Caches III

Review: TIO address breakdown

❖ TIO address breakdown:

▪ Index (s) field tells you where to look in cache
• Number of bits is determined by number of sets (log2 𝐶/𝐾/𝐸)

• Need enough bits to reference every set in the cache

▪ Tag (t) field lets you check that data is the block you want
• Rest of the bits not used for index and offset (𝒎− 𝒔 − 𝒌)

▪ Offset (k) field selects specified start byte within block

• Number of bits is determined by block size (log2 𝐾)

• Need enough bits to reference every byte in a block

5

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Index (𝒔)

CSE351, Summer 2020L17: Caches III

Review: Cache Lookup Process

❖ CPU requests data at a given address
❖ Cache breaks down address into different bit fields
▪ Determines offset, index, and tag bits

❖ Cache checks to see if block containing address is already
in the cache
▪ Uses index bits to find which set to look in
▪ Uses tag bits to make sure the block in the set matches

❖ If block is in the cache, it’s a cache hit
▪ Data is returned to CPU starting at byte offset

❖ If block is not in the cache, it’s a cache miss
▪ Block is loaded from memory into the cache, evicting other blocks

from the cache if necessary
▪ Data is returned to CPU starting at byte offset

6

CSE351, Summer 2020L17: Caches III

Review: Direct-Mapped Cache

❖ Hash function: (block number)
mod (# of blocks in cache)

▪ Each memory address maps to
exactly one index in the cache

▪ Fast (and simpler) to find a block

7

Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Summer 2020L17: Caches III

Direct-Mapped Cache Problem

❖ What happens if we access the
following addresses?

▪ 8, 24, 8, 24, 8, …?

▪ Conflict in cache (misses!)

▪ Rest of cache goes unused

❖ Solution?

8

Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Summer 2020L17: Caches III

Associativity

❖ What if we could store data in any place in the cache?
▪ More complicated hardware = more power consumed, slower

❖ So we combine the two ideas:
▪ Each address maps to exactly one set

▪ Each set can store block in more than one way

9

0

1

2

3

4

5

6

7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct-mapped fully associative

CSE351, Summer 2020L17: Caches III

Cache Organization (3)

❖ Associativity (𝐸): # of ways for each set

▪ Such a cache is called an “𝐸-way set associative cache”

▪ We now index into cache sets, of which there are 𝑆 = 𝐶/𝐾/𝐸

▪ Use lowest log2 𝐶/𝐾/𝐸 = 𝒔 bits of block address
• Direct-mapped: 𝐸 = 1, so 𝒔 = log2 𝐶/𝐾 as we saw previously

• Fully associative: 𝐸 = 𝐶/𝐾, so 𝒔 = 0 bits

10

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕) Index (𝒔) Offset (𝒌)

Note: The textbook
uses “b” for offset bits

CSE351, Summer 2020L17: Caches III

Example Placement

❖ Where would data from address 0x1833 be placed?

▪ Binary: 0b 0001 1000 0011 0011

11

𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒌)𝒎-bit address: Index (𝒔)

𝒔 = log2 𝐶/𝐾/𝐸 𝒌 = log2 𝐾𝒕 = 𝒎–𝒔–𝒌

𝒔 = ? 𝒔 = ?

CSE351, Summer 2020L17: Caches III

Block Replacement

❖ Any empty block in the correct set may be used to store block

❖ If there are no empty blocks, which one should we replace?
▪ No choice for direct-mapped caches

▪ Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

12

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

CSE351, Summer 2020L17: Caches III

Polling Question [Cache III]

❖ We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

▪ Vote at http://pollev.com/pbjones

A. 2

B. 4

C. 8

D. 16

E. We’re lost…

❖ If addresses are 16 bits wide, how wide is the Tag
field?

13

http://pollev.com/pbjones

CSE351, Summer 2020L17: Caches III

● ● ●

General Cache Organization (𝑆, 𝐸, 𝐾)

14

𝐸 = blocks (or lines) per set

𝑆 sets
= 2𝒔

set

line (block plus
management bits)

Cache size:
𝐶 = 𝐾 × 𝐸 × 𝑆 data bytes
(doesn’t include V or Tag)

● ● ●

● ● ●

● ● ●

●
●
●

●
●
●

●
●
●

cache

0 1 2 K-1● ● ●TagV

valid bit
𝐾 = bytes per block

CSE351, Summer 2020L17: Caches III

Notation Review

❖ We just introduced a lot of new variable names!

▪ Please be mindful of block size notation when you look at
past exam questions or are watching videos

15

Parameter Variable Formulas

Block size 𝐾 (𝐵 in book)

𝑀 = 2𝒎↔𝒎 = log2𝑀
𝑆 = 2𝒔 ↔ 𝒔 = log2 𝑆
𝐾 = 2𝒌 ↔ 𝒌 = log2𝐾

𝐶 = 𝐾 × 𝐸 × 𝑆
𝒔 = log2 𝐶/𝐾/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒌

Cache size 𝐶

Associativity 𝐸

Number of Sets 𝑆

Address space 𝑀

Address width 𝒎

Tag field width 𝒕

Index field width 𝒔

Offset field width 𝒌 (𝒃 in book)

CSE351, Summer 2020L17: Caches III

Example Cache Parameters Problem

❖ 4 KiB address space, 125 cycles to go to memory.
Fill in the following table:

16

Cache Size 256 B
Block Size 32 B

Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits

Index Bits
Offset Bits

AMAT

CSE351, Summer 2020L17: Caches III

Cache Read

17

0 1 2 𝐾-1TagV

𝒕 bits 𝒔 bits 𝒌 bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2𝒔

𝐸 = blocks/lines per set

𝐾 = bytes per block

CSE351, Summer 2020L17: Caches III

Example: Direct-Mapped Cache (𝐸 = 1)

18

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

𝒕 bits 0…01 100

Address of int:

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

find set

𝑆=2𝒔 sets

CSE351, Summer 2020L17: Caches III

Example: Direct-Mapped Cache (𝐸 = 1)

19

𝒕 bits 0…01 100

Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CSE351, Summer 2020L17: Caches III

Example: Direct-Mapped Cache (𝐸 = 1)

20

𝒕 bits 0…01 100

Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CSE351, Summer 2020L17: Caches III

Example: Set-Associative Cache (𝐸 = 2)

21

𝒕 bits 0…01 100

Address of short int:

find set

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE351, Summer 2020L17: Caches III

0 1 2 7TagV 3 6540 1 2 7tagV 3 654

Example: Set-Associative Cache (𝐸 = 2)

22

𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

Tag

2-way: Two lines per set
Block Size 𝐾 = 8 B

Address of short int:

CSE351, Summer 2020L17: Caches III

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

Example: Set-Associative Cache (𝐸 = 2)

23

𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE351, Summer 2020L17: Caches III

Types of Cache Misses: 3 C’s!

❖ Compulsory (cold) miss
▪ Occurs on first access to a block

❖ Conflict miss
▪ Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot

• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

▪ Direct-mapped caches have more conflict misses than
𝐸-way set-associative (where 𝐸 > 1)

❖ Capacity miss
▪ Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

▪ Note: Fully-associative only has Compulsory and Capacity misses

24

CSE351, Summer 2020L17: Caches III

Example Code Analysis Problem

❖ Assuming the cache starts cold (all blocks invalid) and sum, i,
and j are stored in registers, calculate the miss rate:

▪ 𝑚 = 12 bits, 𝐶 = 256 B, 𝐾 = 32 B, 𝐸 = 2

25

#define SIZE 8
long ar[SIZE][SIZE], sum = 0; // &ar=0x800
for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

