YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Caches Il

CSE 351 Summer 2020

Instructor: I'™M SORRY, WE (ANT APPROVE
orter Jones THIS PERIIT. YOUR LAND ISN'T
Teaching Assistants: ZONED FOR GIANT-MONEY-BIN

Amy Xu (ONSTRUCTION.

Callum Walker ALSO, OURE
Sam Wolfson \ A DUEK.
Tim Mandzyuk .»J

=

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Administrivia
% Questions doc: https://tinyurl.com/CSE351-7-31

+» hw16 due Wednesday (8/5) — 10:30am

+» Lab 3 due Tonight (7/31) — 11:59pm
" You get to write some buffer overflow exploits!

+» Lab 4 released later today
= All about caches!

+» Unit Summary 2 Due next Wednesday (8/5) — 11:59pm

https://tinyurl.com/CSE351-7-31

YW UNIVERSITY of WASHINGTON L17: Caches Il

Making memory accesses fast!

+ Cache basics
+ Principle of locality
» Memory hierarchies

+» Cache organization

= Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

= Handling writes

+» Program optimizations that consider caches

CSE351, Summer 2020

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Review: Cache Parameters

+ Block size (K): basic unit of transfer between memory
and the cache, given in bytes (e.g. 64 B).

+» Cache size (C): Total amount of data that can be stored
in the cache, given in bytes (e.g. 32 KiB).
" Must be multiple of block size

= Number of blocks in cache is calculated by C/K

+» Associativity (E): Number of ways blocks can be stored
in a cache set, or how many blocks in each set

<+ Number of sets (S): Number of unique sets that blocks
can be placed into in a cache (calculated as C/K/E).

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Review: TIO address breakdown

« T10O address breakdown:

m-bit address: Tag (1) Index (s) | Offset (k)

\ J
Y
Block Number

" Index (s) field tells you where to look in cache
« Number of bits is determined by number of sets (log,(C/K/E))
- Need enough bits to reference every set in the cache

o field lets you check that data is the block you want
- Rest of the bits not used for index and offset (m — s — k)

= Offset (k) field selects specified start byte within block

« Number of bits is determined by block size (log,(K))
- Need enough bits to reference every byte in a block

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Review: Cache Lookup Process

CPU requests data at a given address

Cache breaks down address into different bit fields
= Determines offset, index, and tag bits

» Cache checks to see if block containing address is already
in the cache

= Uses index bits to find which set to look in

= Uses tag bits to make sure the block in the set matches

» If block is in the cache, it’s a cache hit

= Datais returned to CPU starting at byte offset

» If block is not in the cache, it’s a cache miss

= Block is loaded from memory into the cache, evicting other blocks
from the cache if necessary

= Datais returned to CPU starting at byte offset

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Review: Direct-Mapped Cache

Memory Cache
Block Num Block Data Index Tag Block Data _
oojoo | | , 00 [o0 T
00/01 11 01 11 111 Here K=48B
00|10 o 10 |o1 o —andC/K =4
00[11 L 11 [o1 1
01100 | | |
01/01 L .
0119 Hash function: (block number)
| | |
R] L mod (# of blocks in cache)
1ofoof [T T 1
10loaf [1 " Each memory address maps to
oo | 1 L exactly one index in the cache
10|11
11/o0l : : : " Fast (and simpler) to find a block
11{01 I
11|10| Lo
11111 I |

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Direct-Mapped Cache Problem

Memory Cache
Block Num Block Data Index Tag Block Data
00/00| Lo 00 |22 T
00j01 11 01 |22 TR Here K =4 B
00|10| o 10 T —and C/K =4
oojl1yf [, 4 11 [2° L
01|00 | | |
o + What h f th
o1l10l T X d appens It we aCcess e
oy vt following addresses?
1ojoof |,
10[01 L1 = 8,248, 24,8, ..?
18 ﬂ' ' ' ' = Conflict in cache (misses!)
]]]
11fool | 1 1 i = Rest of cache goes unused
11|01 - _
o [T 1 +» Solution?
11f11 T

YW UNIVERSITY of WASHINGTON

N o o WON R O

Associativity

L17: Cacheslli

CSE351, Summer 2020

+ What if we could store data in any place in the cache?

= More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

= Each address maps to exactly one set

= Each set can store block in more than one way

1-way:
8 sets,
1 block each

direct-mapped

Set

2-way:
4 sets,
2 blocks each

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks

fully associative

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Note: The textbook
uses “b” for offset bits

Cache Organization (3)

+ Associativity (E'): # of ways for each set
= Such a cache is called an “E-way set associative cache”

= We now index into cache sets, of which thereare S = C/K/E
" Use lowest log,(C/K/E) = s bits of block address

- Direct-mapped: E =1,s0s=1og,(C/K) as we saw previously

- Fully associative: E = C/K, so s =0 bits

Used for tag comparison Selects the set Selects the byte from block
I I I
Tag (1) Index (s) Offset (k)

— Increasing associativity

Decreasing associativity +— o
| Fully associative

Direct mapped | (only one set)
(only one way)

10

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example Placement capacity: 8 blocks

block size: 16B

address: 16 bits

+» Where would data from address 0x1833 be placed?
" Binary: Ob 0001 1000 0011 0011

wn
\lO\U’l-b(.DI\JI—‘Os_Dr

=m-s-k s=log,(C/K/E) k-=Ilog,(K)

m-bit address: Tag (1) Index (s) Offset (k)
s=7 s=7 s=7
Direct-mapped 2-way set associative 4-way set associative
Data Set Data Set Data
0
0
1
2
1
3

11

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Block Replacement

+» Any empty block in the correct set may be used to store block

+ If there are no empty blocks, which one should we replace?
®= No choice for direct-mapped caches

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

Direct-mapped 2-way set associative 4-way set associative
Set Data Set Data Set Data
0 0
1
0
2 1
3
4 2
> 1
6 3
7

12

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Polling Question [Cache Ill]

+ We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

= \/ote at http://pollev.com/pbjones

a4
8
16

A.
B.
C.
D.
E. We're lost...

+ If addresses are 16 bits wide, how wide is the Tag
field?

13

http://pollev.com/pbjones

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

General Cache Organization (S, E, K)

E = blocks (or lines) per set

r N D
cache ¢ y
(N J
=l
T~ (block plus
coe management bits)
S sets < oo
e I
=2 . R .
° ° o
° ° o
00
\ s A
Cache size:
C =K XE XS data bytes v Ta ol1]2] eee | k1
(doesn’t include V or Tag) :
—

S —
valid bit YT
K = bytes per block

14

L17: Cachesl i CSE351, Summer 2020

YW UNIVERSITY of WASHINGTON

Notation Review

+» We just introduced a lot of new variable names!

= Please be mindful of block size notation when you look at
past exam questions or are watching videos

T T T

Block size K (B in book)
Cache size C
M=2"om=log, M
Associativity E S=2os=log,S
Number of Sets S K=2"olk=1log, K
Address space M
C=KXEXS
Address width m s = log,(C/K /E)
Tag field width m=:>+s+k
Index field width S

Offset field width & (b in book)

15

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example Cache Parameters Problem

+ 4 KiB address space, 125 cycles to go to memory.
Fill in the following table:

Cache Size 256 B
Block Size 32 B
Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits
Index Bits
Offset Bits
AMAT

16

YW UNIVERSITY of WASHINGTON

L17: Cacheslli

CSE351, Summer 2020

Cache Read

S = # sets <
= 25

E = blocks/lines per set

1) Locate set

2) Check if any line in set
is valid and has
matching tag: hit

p A 3) Locate data starting
at offset
(B I J
Address of byte in memory:
*e & bits s bits | k bits
eee tag set block
index offset
o000
(B I J
data begins at this offset
\Y Tag O] 1|2 ccce- K-1
o — v
valid bit M

K = bytes per block

17

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

4 Address of int:
V Tag ol1]213l2ls]l6]7 ,
¢ bits 0..01 | 100
V Ta ol1]213l2ls]l6]7 ,
° find set
5=2°% sets <
V Tag ol1]l213]a]ls]le]|7
[I I)
V Tag ol1]l213]a]ls]l6]|7
\.

18

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
 bits 0..01 | 100

valid? + match?: yes = hit

\Y Tag O11{2|314]51]16]|7

block offset

19

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example: Direct-Mapped Cache (£ =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
 bits 0..01 | 100

valid? + match?: yes = hit

Y Tag ol1]2|3]|4]|5]6]7
block offset
int (4 B)is here
(48) This is why we
want alignment!

No match? Then old line gets evicted and replaced

20

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example: Set-Associative Cache (E£ = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

¢ bits 0..01 | 100

v| [ag | lo]al2]3la]slel7]| [Lv] [me | [ol2f2]3]4]5]6]7
Vil mae | lol1]2]3]4]ls5]6]7 N Tag_|01234567_ﬁndset
v [teg | lola]203la]sle]l 7| ILv] [e | [olaf2]3]2]5]6]7

00

21

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example: Set-Associative Cache (E£ = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

& bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| Lrag | [o]1]2]3]a]s5]6]7 V| [tag | [olz]2f3]a]s]el7]] —

block offset

22

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example: Set-Associative Cache (E£ = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

& bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [1ae | lola]2fsla]s]el7 | ILv] [e | [olal2]3]2]s]6l7]| —

block offset

short int (2 B)is here

No match?
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

23

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Types of Cache Misses: 3 C’s!

% Compulsory (cold) miss
= QOccurs on first access to a block
«» Conflict miss

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot
- e.g. referencing blocks 0, 8, 0, 8, ... could miss every time
= Direct-mapped caches have more conflict misses than
E-way set-associative (where E > 1)
« Capacity miss

= QOccurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

= Note: Fully-associative only has Compulsory and Capacity misses

24

YW UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Summer 2020

Example Code Analysis Problem

+» Assuming the cache starts cold (all blocks invalid) and sum, i,
and 7 are stored in registers, calculate the miss rate:

"= m=12bits, C =256B,K=32B,E =2

#define SIZE 8
long ar[SIZE] [SIZE], sum = 0; // &ar=0x800
for (int 1 = 0; 1 < SIZE; 1i++)
for (int §J = 0; J < SIZE; J++)
sum += ar([i][]J];

25

