W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Caches i

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Administrivia
«» Questions doc: https://tinyurl.com/CSE351-7-29

2 hw15 due Friday (7/31) — 10:30am
+» No homework due Monday!

+ Lab 3 due Friday (7/31) — 11:59pm

" You get to write some buffer overflow exploits!

% Unit Summary 2 Due next Wednesday (8/5) — 11:59pm

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systemes:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
- True for: registers €< cache, cache <> DRAM, DRAM <& disk, etc.

= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully

" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

An Example Memory Hierarchy
*

registers CPU registers hold words retrieved from L1 cache

on-chip L1
Smaller, ~ cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier
per byte

off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved
from main memory

M u main memory

s L
Al) (DRAM) Main memory holds disk blocks
retrieved from local disks

Larger,
slower,
cheaper

per byti~ wy’;‘u local secondary storage
° (local disks)

Local disks hold files
retrieved from disks on
remote network servers

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

An Example Memory Hierarchy
*

explicitly program-controlled
registers & (e.g. refer to exactly %rax, %rbx)

on-chip L1
Smaller, cache (SRAM)
faster,
costlier
per byte

program sees “memory”’;
hardware manages caching
transparently

off-chip L2
cache (SRAM)

main memory

Larger,
(DRAM)

slower,
cheaper

per byte local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

An Example Memory Hierarchy

<lns 5-10s a
registers .

on-chip L1
Smaller, cache (SRAM)
faster,
costlier
per byte

off-chip L2
cache (SRAM) e
K - [

100 ns main memory 15-30 min

Larger,
(DRAM)

slower,

cheaper 150,000 ns/ ™ cop
per byte local secondary storage

10,000,000 ns Disk (local disks)

66 months = 5.5 years
(10 ms)

1-150 ms remote secondary storage
(distributed file systems, web servers)

1-15years

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Intel Core i7 Cache Hierarchy

(ofe Whet execnde$

Processor package WSt

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
L1 L1 32 KiB, 8-way,
d-cache| |i-cache d-cache| |i-cache Access: 4 cycles

L2 unified cache:
L2 unified cache L2 unified cache 256 KiB, 8-way

Access: 11 cycles

L3 unified cache L3 unified cache:

(shared by all cores) 8 MiB, 16-way,
Access: 30-40 cycles

Main memory

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Making memory accesses fast!

Cache basics
Principle of locality
Memory hierarchies

Cache organization

®" Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

®= Handling writes

Program optimizations that consider caches

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Note: The textbook
uses “B” for block size

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem

= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!
Lﬁ-b lae Withiw Game \olog_k

L 1

by L o lecx O

©)" 06 0...00(999000
(D 3" O\o 0--0 OO
L\.l:‘i)\oo-’"o) ©00 990 ok ot

' (1) 4 W\9 ¢
107 ob -0 1] /__/n__»\
\letL \O\°ﬁcﬂx o) 3 B L£& N

%\ 7\ L3¢ = bux size ¥ B
Wwioe i

VL

o\ o

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem

= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (dlffer in address by 1)

S -5
- Spatial locality! XD 17 = vale of toe LN

: ob
« Offset field b ,\,,.T?'P -y Qz’
= Low-orderlog,(K) = k bits of a dress tell you which byte
within a block

How many) b vodo I
- (address) mod 2™ = n lowest bits of address el ko 5@ e

= (address) modulo (# of bytes in a block) ~ &V*73 *4k in ~ ploukd

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Polling Question [Cache ll-a]

» If we have 6-bit addresses and block size K =4 B,
which block and byte does 0x15 refer to?

= \/ote at: http://pollev.com/pbjones

Ox | 5
o) 2 \yel

\o\o Oé-uuﬂ\ og_S—Sd'
‘\

Block Num Block Offset

A.
B.
D. 5 — ocsk T2 Livs
E. We're lost...

\0‘3 zL\(

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Cache Organization (2)
L‘.\\o\;g\rbs

» Cache Size (C): amount of data the $ can store

= Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C/K)

" Example: C =32 KiB =512 blocks if using 64-B blocks
z_g,g 2}0/26 — Z.q \O\OC/%S

+» Where should data go in the cache?

= We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
= Hash table!

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Review: Hash Tables for Fast Lookup

Apply hash function to map dat

to “buckets”
(.DDA-V’: Ry g a5% Jglmpde Colow\odton

M/\

@ Jse ol otk s Mol
(apob WENWELLY

0
1
2
3
4
5
6
7
8
9

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Place Data in Cache by Hashing Address

D
AAR’A% a-\‘tc,-\o:ks;(ﬂ\o WX X XXX

Memory et

Block Num Block Data Index Block Data
06“@ | | R | |

0001
0010
0011
0100
0101

; —+— Map to cache index from block
Og number §=C/x

1

11

= " Use next log,(C/K) = s bits in
o the address (after offset bits)
o

L

]]

I I _HereK=4B
| | and C/K =4
| |

\\ocks

|

|

1000 :
1001 I
1010 |
]

]

|

|

1011
1100
1101 = (block number) mod (# blocks in
1110 L1 cache) "~ ronabivs Jo Tneel
1111 I 4e sfe_cfﬁwj Quuj 4o/ inder
7% M\DL&L\’&?

« C/K is the number of sets here

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Place Data in Cache by Hashing Address

Memory Cache

Block Num Block Data Index Block Data
0000 ; ; »00 ; ;
0001 01
0010
0011
0100

812; —+— Map to cache index from block

number

]]

I I _HereK=4B
| | and C/K =4
| |

|

0111 |
71000 :
1001 I
1010 |
]

]

|

|

1

1 1

I I

- = |ets adjacent blocks fit in cache
o simultaneously!
1 1

(.

I 1

1011
1100
1101
1110 L1
1111 B

- Consecutive blocks go in consecutive
cache indices

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Practice Question

oeloek bivs =k = \93,&\\7 2
» 6-bit addresses, block size K =4 B, and our cache
holds S = 4 blocks. = C /% (= ue)

+ A request for address Ox2A results in a cache miss.
Which set index does this block get loaded into and
which 3 other addresses are loaded along with it?

= No voting for this question
st 0% O loi \O Trbex = 0b\D =72
o0& 52X

A
— M retses W /b lock nue 1O\0

\g\oA vl % mse
oo Z 092
0\3 \O \O 7%% \ooled tnto

o\ of =
g\\:to\D \9 = 7—A Loehe

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Place Data in Cache by Hashing Address

Memory Cache

Block Num Block Data Index Block Data
0000 ' ' »00 ' '

1 1
0001 01 I I | HereK=48B
0010 10 [[andC/K =4
I I

0011 11
0100
0101

/\ 0110

1

|

I

I

]

I

|

|

0111 [1
uﬁ“”ﬂ““iooo !
|

I

]

|

I

|

|

|

Collision!

= This might confuse the cache later
when we access the data

<Mt 1001
1010
1011
1100
1101
1110
1111

= Solution?

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Tags Differentiate Blocks in Same Index

Memory Cache

Block Num Block Data Index Tag Block Data
0000 ; ; »00 |00 ; ;
00 01
00
0
01

]]

I I _HereK=4B
01 | [and C/K =4

| |

01

Tag = rest of address bits
Mife N LR
" fbits=m—s—k

o romr omr omRr

® Check this during a cache lookup

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Checking for a Requested Address

+» CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # their phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\]
Y
Block Number

Index field tells you where to look in cache
field lets you check that data is the block you want
Offset field selects specified start byte within block

Note: 7 and s sizes will change based on hash function

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Checking for a Requested Address Example

+ Using 8-bit addresses.

+» Cache Params: block size (K) =4 B, cache size (C) =32 B
(which means number of sets is C/K = 8 sets).
= Offset bits (k) = log, (K) = g, (1) = 2 L1
" Index bits (s) = log, (num sets) = \0'57_(‘63 =3\
= Tag bits (t) = Rest of the bits in the address =& -2-3=5 bivs

_bit address: Tag (1) Index (s) | Offset (k)

m-pit address | ag ' ndex (s) se ,\,,_p) &\Au pyre
Block Number (%\O \\\ \O\\O

« What are the fields for address OxBA?

= Tag bits (unique id for block): obley = S
= |ndex bits (cache set block maps to): oL O="6
= Offset bits (byte offset within block): 2 blo= <

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Cache Puzzle [Cache llI-b] Vote at http://pollev.com/pbjones

+ Based on the following behavior, which of the
following block sizes is NOT possible for our cache?
= Cache starts empty, also known as a cold cache |

I i R 2N o \ \ff-AA m cacle
= Access (addr: hit/miss) stream: Wik plock i%aVesh

2l - : i coLMe
. (14: miss), (15: hit), (16: miss) i%s." block i$ “’Z))
D s o Q) 15 (2 [i mat s bloLe£ermm mcmerty
w/t"\ tnko 5&% Mb\,uc.u/["m.ul\(N\; ‘D\,&s ¥ caCle

A= 5 VH
SV 2y 4 s CF R V0N n3 ISl
A. e LI LIV L Y T T\
B. 8bytes ys4| | | xAX

<%

K
C. 16 bytes
A y l;\(ol

lD 32 bLtES‘K=)

E. We're lost...

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Direct-Mapped Cache Problem

Memory Cache

Block Num Block Data Index Tag Block Data
oofoo | | ; 00 |2? ; ;
00j01 01 ?7? I
00[10 10 |
00J11 11 ;
01/l00
01401
01{10 |
01|11 I
10|00 ;
10/01 I

10|10 |

:
|
|

: | Here K =4
: and C /K =

—

«» What happens if we access the

following addresses? s
et e\

e caC
" 824 8 24 8, .7 evices din
O T T oV A PR 4l bt V::fa_

= Conflict in cache (misses!)

10|11
11j00
11|01 .
1afaol [o + Solution?
11111 I

= Rest of cache goes unused

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Associativity

+» What if we could store data in any place in the cache?

®= More complicated hardware = more power consumed, slower

+» So we combine the two ideas:
= Each address maps to exactly one set
= Each set can store block in more than one way
1-way: 2-way: 4-way: 8-way:

8 sets, 4 sets, 2 sets, 1 set,
1 block each 2 blocks each 4 blocks each 8 blocks

Nou b, WNERO

direct-mapped fully associative ’3

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Note: The textbook
uses “b” for offset bits

Cache Organization (3)

+ Associativity (E): # of ways for each set b

= Such a cache is called an “E-way set associative cache” __
= We now index into cache sets, of which thereare S =C

" Use lowestlog,(C/K/E) = s bits of block address

- Direct-mapped: E =1,s0s=1log,(C/K) as we saw previously

- Fully associative: E = C /K, so s =0 bits

Used for tag comparison Selects the set Selects the byte from block

I I I

Tag (1) Index (s) Offset (k)

— Increasing associativity

Decreasing associativity«— .

. | Fully associative
Direct mapped | (only one set)
(only one way)

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

block size: 16 B

Example Placement capacity: 8 blocks

address: 16 bits

+ Where would data from address 0x1833 be placed?
" Binary: Ob 0001 1000 0011 0011

e
- sl =1982(C/K/E) I = log, (K)
m-bit address: | Tag (/) Index (s) |Offset (k)

\oah_(.%> VO'M—“’B \o9.. (2)

S =?3hitg S=7? ZLitS S =7 (Lit+
Direct-mapped 2-way set associative 4-way set associative

Data Set Data Set Data

990

\// ol 1

\9 2

v 3 \‘//

\ICDU'I-wal—\OE

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Direct-Mapped Cache

Memory Cache

Block Num Block Data Index Tag Block Data
oolool | | ; »00 |00 ; ;
00/01 01 |11 I
00|10 01 !
00|11 01 ;
01|00
01|01
o1ji0] [
01j11 |
10|00 ;
10/01 I

10|10 |

;
|
|

]

I __HereK=4B
| and C/K =4
|

—

Hash function: (block number)
mod (# of blocks in cache)

1

11

| |

- = Each memory address maps to
L exactly one index in the cache
o

I 1

10[11
11/00
11{o1
111200 | ;4
fay | o1

= Fast (and simpler) to find a block

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Direct-Mapped Cache Problem

Memory Cache

Block Num Block Data Index Tag Block Data
oojoo | | ; 00 |2? ; ;
00(01 01 ?7? I
00|10 10 |
00|11 11 ;
01]00
01|01
01{10 |
01|11 I
10|00 ;
10/01 I

10|10 |

:
|
|

]

I _HereK=4B
| and C/K =4
|

—

«» What happens if we access the
following addresses?
= 8,24,8, 24,8, ..7
= Conflict in cache (misses!)

10|11
11j00
11|01 .
1afaol [o + Solution?
11111 I

= Rest of cache goes unused

W UNIVERSITY of WASHINGTON L16: Caches Il CSE351, Summer 2020

Notes Diagrams

A

Smaller,

faste.r, on-chip L1
costlier cache (SRAM

per byte
off-chip L2 Larger
cache (SRAM) ger,
slower,
main memory cheaper
(DRAM) per byte
local secondary storage v
(local disks)
remote secondary storage
(distributed file systems, web servers)

bits s bits k bits

m-bit address: Tag Index Offset

(refers to a byte in memory) v v

Used for Selects Selects the
tag comparison the index byte from block

m — k bits k bits
m-bit address: Block Number Block Offset

