YW UNIVERSITY of WASHINGTON

L15: Caches |

Memory & Caches |

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

HEARTBLEED MUST
BE THE \JORST WEB
SECURITY LAPSE EVER.

WORST 50 FAR.
GVE US TIME.

Pr

T MEAN, THIS BUG ISNT

Just BR-‘D’KENIIr ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY CONTENTS.

3

CSE351, Summer 2020

IT'9 NOT JUST KEYS.
IT'S TRAFRC DATA.
EMAILS. PASSLIORDS.
EROTIC FANRCTION.

IS EVERYIHING
(DI"‘IFI-?D!“!}'SED?

WELL, THE ATTACK 1S
UMITED TO DATA SIORED
IN COMPUTER MEMORY.

50 PAPER 15 SAFE.
AND CLAY TP‘BLETS.

OUR IMAGINATIONS, ToO.
‘EEE.UELLB‘EFNE

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and

it was ...

bad. | saw emails, passwords, password hints. SSL keys and

session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/

http://xkcd.com/1513/

YW UNIVERSITY of WASHINGTON L15: Caches!|

Administrivia
% Questions doc: https://tinyurl.com/CSE351-7-27

+» hw14 due Wednesday (7/29) — 10:30am

" This one is especially long, please start early
+» hw15 due Friday (7/31) — 10:30am

+» Lab 3 due Friday (7/31) — 11:59pm

" You get to write some buffer overflow exploits!

+» Unit Summary 2 Due next Wednesday (8/5) — 11:59pm

https://tinyurl.com/CSE351-7-27

YA UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Roadmap

C: Java: Memory & data

car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly get_mpg: Processes
. pushg srbp .
language: movq srsp, $rbp Virtual memory
. Memory allocation
popq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000 \/
de: 100011010000010000000010 A \
COdE. 1000100111000010 A
110000011111101000011111 Windows 10 0sx Yosemie s
i [|
v v
Computer

system:

YW UNIVERSITY of WASHINGTON

L15: Caches |

Aside: Units and Prefixes

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

- |EC prefixes are unambiguously base 2

» Here focusing on large numbers (exponents > 0)
- Note that 103 = 210

» Sl prefixes are ambiguous if base 10 or 2

CSE351, Summer 2020

SI Size Prefix Symbol | IEC Size Prefix Symbol
103 Kilo- K 210 Kibi- Ki
10° Mega- M 220 Mebi- Mi
10° Giga- G 230 Gibi- Gi
10> Tera- T 240 Tebi- Ti
1015 Peta- P 250 Pebi- Pi
1018 Exa- E 299 Exbi- Ei

1021 Zetta- Z 270 Zebi- Zi
10%4 Yotta- Y 280 Yobi- Yi

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

How to Remember?

+ Will be given to you on Final reference sheet

<« Mnemonics

®" There unfortunately isn’t one well-accepted mnemonic
« But that shouldn’t stop you from trying to come with one!

= Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

= Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

= xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
. https://xkcd.com/992/

= Post your best on Piazza!

https://xkcd.com/992/

YW UNIVERSITY of WASHINGTON L15: Caches!|

int array[SIZE];
int sum = 0;

for (int 1 = 0; 1 < 200000;
for (int 7 = 0;] < SIZE;
sum += arrayl[]J];

1++)
j++)

{
{

Plot:

Execution Time

SIZE

CSE351, Summer 2020

How does execution time grow with SIZE?

WA UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Actual Data

45

40

35

30

25

Time

20

15

10

0 2000 4000 6000 8000 10000

SIZE

YW UNIVERSITY of WASHINGTON L15: Caches!|

Making memory accesses fast!

+» Cache basics

+ Principle of locality
+» Memory hierarchies
+ Cache organization

+» Program optimizations that consider caches

CSES351, Summer 2020

CSE351, Summer 2020

YA UNIVERSITY of WASHINGTON L15: Caches!|

Processor-Memory Gap

100,000
“Moore’s Law”
e e e o LPrOC | e
FOe0 55%/year
(2X/1.5yr) \
& 1000 Y]
5 -
= Processor Processor-Memory
< Performance Gap
) 100 e o e e o S e R e e e e O B et I o e e e et o B o O S o i o e o B o O o i e e B 3 B
o
10 e e B e e e e e O LB e o e e e e e ot B D e e e e B e e e e B e e e o o
1 I i I i |
1980 1985 1990 1995 2000 2005
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Ill has two cache levels on chip (2X/10yrs)

2010

YA UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Problem: Processor-Memory Bottleneck

Processor performance

doubled about .
every 18 months Bus latency / bandwidth

evolved much slower

Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time) 10

YA UNIVERSITY of WASHINGTON

Problem: Processor-Memory Bottleneck

Processor performance

doubled about
every 18 months

CPU | Reg

Core 2 Duo:
Can process at least
256 Bytes/cycle

L15: Caches |

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

CSE351, Summer 2020

11

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Cache @

« Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

= More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0O cache, etc.)

12

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

General Cache Mechanics

* Smaller, faster, more expensive

Cache 7 9 14 3 memory
* Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory 0 1 2 3 * Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15

13

YW UNIVERSITY of WASHINGTON

General Cache Concepts: Hit

Cache

Memory

L15: Caches |

Request: 14
7 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

CSE351, Summer 2020

Data in block b is needed

Block b is in cache:
Hit!

Data is returned to CPU

14

YW UNIVERSITY of WASHINGTON

L15: Caches |

CSE351, Summer 2020

General Cache Concepts: Miss

Cache

Memory

Request: 12

7 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU

15

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

16

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently Q

block

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

17

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Why Caches Work

» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently
. F R block
+» Temporal locality:
= Recently referenced items are likely
to be referenced again in the near future ﬁ
+» Spatial locality: block

" |tems with nearby addresses tend
to be referenced close together in time

How do caches take advantage of this?

/
000

18

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Example: Any Locality?

sum = 0;
for (i = 0; 1 < n; i++)
{

sum += alf[i];

}

return sum;

<« Data:

" Temporal: sumreferenced in each iteration

= Spatial: consecutive elements of array a [] accessed

« Instructions:

®" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

19

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Locality Example #1

int sum array rows (int a[M] [N])
{
int i, j, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; Jj++4)
sum += ali][]];
return sum;
}

20

YW UNIVERSITY of WASHINGTON

Locality Example #1

L15: Caches| CSE351, Summer 2020

int sum array rows (int a[M] [N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (J = 0;] < Nj;
sum += ali][]];

return sum;

}

M = 3, N=4

Access Pattern:
stride =7?

Layout in Memory

I I I
76 92 108

=
N P O W o J o U W N

S N N N S S N S N SN N~ N~
L Y Y I N h N S [N | N D [S D S S S—
rm r—/—m —/ /g /o e gpr/] /oo /oo

W N P oOoJlw N P OoOfw DD —» O

N NN DR RO O O O

rm r—/m —/ /g /O /o g/ /oo /oo

O O Y 9l Y Y YIY O O Y

[

Note: 76 is just one possible starting address of array a

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; Jj++)
for (1 = 0; 1 < M; 1i++)
sum += ali][]];
return sum;
}

22

YW UNIVERSITY of WASHINGTON

Locality Example #2

L15: Caches| CSE351, Summer 2020

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; J++)
for (1 = 0; 1 < M;
sum += ali][]];
return sum;
}

M = 3, N=4

Access Pattern:
stride =7?

Layout in Memory

=

N P O OW 0O 1 o O b W N B
S N N N S S N S N SN N~ N~
—_ e P P e e B e e e B
g/ g g g/ a1 g fr g g g g

WIWITWININDINIRPIRPIR]IO|O)] O

NIFRJIOINIR|IOINDIFRIOINIR]O

g/ g g g g g g g g g g

(URN ORI VRN (IQVRY [NOVRY OB O VRN TR [QVRY)

[

YW UNIVERSITY of WASHINGTON

L15: Caches |

Locality Example #3

int sum array 3D(int a[M] [N][L])
{

k, sum 0;

int i, 7, =

(1 = 0; 1 < N; 1i++)

for (j = 0; j < L; Jj++)
for (k = 0;

for

return sum;

k < M; k++)
sum += alk][i]1[3];

a[2][0][0]

a[2][0][1]

a[2][0][2]

a[2]1[0][3]

a[11[0][0]

Ha[1][0][1]

a[1]1[0][21Ha[11[0]1[3]

a[0][0][0]

Hal01[0][1]

Inl

a[0][0][2]

Inl

1
|

a[0][0][3]

ILII_IO-IJ—IIJ—][3]

z1= | [3]

IS4 L] L

IVIHTS] LT L

1
|

ESINE=IESIEs

a[0][1][0]

HalOl[1][1]

a[0][1][2]

a[0][1][3]

1< 11 IO-lJ-JlL][3]

z1z (3]

4] L] &

IVITIA] L&

BN NI EN e

CSE351, Summer 2020

+~ What is wrong

with this code?

+ How can it be

fixed?

€«<—m-= 2

«<—m=1

| — [nl

| — [nl

a[0][2][0]

|alo][2][1]

a[0][2][2]

a[0][2][3]

«<—m=0

24

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Locality Example #3

int sum array 3D(int a[M] [N][L]) + What is wrong
{ *

int i, j, k, sum = 0; with this code?

for (i = 0; i < N; i++)

for (j = 0; j < L; Jj++)
for (k = 0; k < M; k++) | < How can it be
sum += alk][i]1[3];)
fixed?

return sum;

}

Layout in Memory (M =?,N=3,L=4)

a a
(0] [o]} [o]] [o] (o] | (o]} (o] (o] [O]}[0]][O] (O] (1]} [L]{ (]| 2]} (1] | (2] {[2]| (2]} (2] {[2]]IL]
(o] [T} [O1| (o] | [x]| (21) (11| (2] (2]} (2] (2] { (2] [O1 | [O]{ (O] | [OT| (1] [1]{ (2]} (1]} (2] (2] |[2]][2]
(o] (2T} (21| (31| (o] | (21] (21| (3] {[OT | (1]} (2] { (3T [O1] [11{ (2] 31| (O] [1]{[2]| (31| (O] [2]|[2]][3]

1 1 1 | 1 | |

76 92 108 124 140 156 172

25

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Cache Performance Metrics

+» Huge difference between a cache hit and a cache miss

" Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

% Miss Rate (MR)
" Fraction of memory references not found in cache (misses /

accesses) = 1 - Hit Rate Hit fales HT ’Z)CPU\
% Hit Time (HT) Misy takes HT+MP QCM\'\&DD
®" Time to deliver a block in the cache to the processor))

« Includes time to determine whether the block is in the cache

% Miss Penalty (MP)
= Additional time required because of a miss

26

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Cache Performance

+ Two things hurt the performance of a cache:
" Miss rate and miss penalty

+ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+» 99% hit rate twice as good as 97% hit rate!
= Assume HT of 1 clock cycle and MP of 100 clock cycles
" 97%: AMAT =
" 99%: AMAT =

27

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Polling Question [Cache]

+ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

«» Which improvement would be best?
= \/ote at http://PollEv.com/pbjones

A.

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

28

http://pollev.com/pbjones

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:
" Miss Rate
« L1 MR =3-10%
- L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty
« P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

29

YW UNIVERSITY of WASHINGTON L15: Caches!| CSE351, Summer 2020

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize
data transfers between any system elements with different
characteristics

+ Cache Performance
= |deal case: found in cache (hit)
" Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
« Hurt by Miss Rate and Miss Penalty

30

