W UNIVERSITY of WASHINGTON

L15: Caches |

Memory & Caches |

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

HEARTBLEED MUST
BE THE WORST WEB
SECURITY LAPSE EVER.

WORST S0 FAR.
GVE US TME.

P

I MEAN, THIS BUG ISNT

JusT BROKEN/ ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY CONTENTS.

3

CSE351, Summer 2020

IT'5 NOT JUST KEYS.
IT'S TRAFAC DATA.
EMAILS. PASOWORDS.
EROTIC FANACTION.

IS EVERYTHING
CDMPROI“I;SED?

WELL, THE ATTACK 1S
UMTED TO DATA SIDRED
IN COMPUTER MEMORY.

S0 PAPER IS SAFE.
AND CLAY TRBLETS.

OUR IMAGINATIONS, Too.)
SEE, UELL BE FINE.

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and
it was ... bad. | saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Administrivia
+» Questions doc: https://tinyurl.com/CSE351-7-27

<+ hw14 due Wednesday (7/29) — 10:30am

" This one is especially long, please start early

+» hw15 due Friday (7/31) — 10:30am

% Lab 3 due Friday (7/31) — 11:59pm

" You get to write some buffer overflow exploits!

% Unit Summary 2 Due next Wednesday (8/5) — 11:59pm

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Roadmap

C: Java: Memory & data

Integers & floats
x86 assembly

car *c = malloc(sizeof (car)):; Car ¢ = new Car () ;

c—->gals =
float mpg
free(c);

c->miles =

100;
17;
= get mpg(c);

c.setMiles (100);

c.setGals (17);

float mpg =
c.getMPG () ;

Procedures & stacks
Executables
Arrays & structs

Assembly
language:

Machine
code:

Computer
system:

—~

get mpg:
pushqg
movq

srbp
srsp,

srbp
|

Popq
ret

ér,—"

A 4

Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

0111010000011000

1000100111000010

100011010000010000000010

110000011111101000011111

Windows 10

v

\/
/\ A

. 0OS X Yosemite \A/

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Aside: Units and Prefixes

Here focusing on large numbers (exponents > 0)
Note that 103 = 210

1000 oY) .
S| prefixes are ambiguous if base 10 or 2

|IEC prefixes are unambiguously base 2

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

SI Size Prefix Symbol | IEC Size Prefix
10° Kilo- 210 Kibi-
10° Mega- 220 Mebi-
10° Giga- 00 Gibi-
1012 Tera- 240 Tebi-
1015 Peta- 250 Pebi-
1028 Exa- 290 Exbi-
10%1 Zetta- Zebi-
10%4 Yotta- 280 Y obi-

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

How to Remember?

+~ Will be given to you on Final reference sheet

< Mnemonics

" There unfortunately isn’t one well-accepted mnemonic

 But that shouldn’t stop you from trying to come with one!
Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
- https://xkcd.com/992/

Post your best on Piazza!

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

How does execution time grow with SIZE?

int array[SIZE];
] —
int sum = O;

for (int 1 = 0; i < 200000; 1i++) {
for (int j = 0; j < SIZE; j++) {

sum += array|j];£é/exaod¢,QIZEXZODpoaywas
}

[

Execution Time

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Actual Data

45

40

35

30

25

20

15

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Making memory accesses fast!

» Cache basics

% Principle of locality
<~ Memory hierarchies
+ Cache organization

+» Program optimizations that consider caches

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Processor-Memory Gap

100,000

“Moore’s Law”

b 55%/year

1000 - %
Processor-Memor

100 -

3
c
w©
-
O
=
5
o

10 -

1980 1985 1990 1995 2000 2005 2010

Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium IIl has two cache levels on chip (2X/10yrs)

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo: Core 2 Duo: \ ++ ONE DAY SALE g B

Can process at least Bandwidth > 2 '

CPU | Reg

256 Bytes/cycle 2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

cycle: single machine step (fixed-time)

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

CPU | Reg

Core 2 Duo: Core 2 Duo:) % ONED oAY

Can process at least Bandwidth e
256 Bytes/cycle 2 Bytes/cycle AP

Latency
100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Cache

« Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

= More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0O cache, etc.)

W UNIVERSITY of WASHINGTON L15: Caches |

General Cache Mechanics
C 9V

b

Data is copied in block-sized

CSE351, Summer 2020

Smaller, faster, more expensive
memory
Caches a subset of the blocks

kef

transfer units —5 oten 2 by

1 2 3
5 6 7
9 10 11
12 13 14 15

* Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”

W UNIVERSITY of WASHINGTON

L15: Caches |

[PV

General Cache Concepts

T

CSE351, Summer 2020

i O

Request: 14 > DData in block b is needed

14

3

Block b is in cache:
Hit!

@Data is returned to CPU

1

2

3

5

6

7

9

10

11

12

13

14

15

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

General Cac%e Concepts: Miss D
C/UD \Z—

F Request: 12 \DData in block b is needed

Block b is not in cache:
Miss!

12

@BIock b is fetched from

memory

Request: 12

@Iock b is stored in cache
1 2 3 * Placement policy:
5 6 7 determines where b goes

* Replacement policy:
2 10 11 determines which block
12 13 14 15 gets evicted (victim)

@ata is returned to CPU

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

\J

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Why Caches Work

Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

\J

Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future ﬂ

Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

How do caches take advantage of this?

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Example: Any Locality?

return sum;

< Data:

" Temporal: sumreferenced in each iteration

= Spatial: consecutive elements of array a [] accessed

« Instructions:

= Temporal: cycle through loop repeatedly
= Spatial: reference instructions in sequence

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Locality Example #1

int sum array rows (int a[M] [N])

{

int i, j, sum = 0;
for (i = 0; 1 < M; i++)
for (j = 0; 7 < N; J++)

sum += af[i][7];

return sum;

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Locality Example #1

fou ol

int sum array rows (int a[M] [N]) M =3, N=4
{ a[0][0] || a[0][1]
int i, j, sum = 0;

a[1][0]||al1][1]

for (1 = 0; 1 < M; 1++)
for (§ = 0; J < N; J++) a[2][0] || al2][1]

sum += af[i][7];

o 9
o Access Pattern:

) _ Stride =7
Z‘c \6“‘u’\(/

return sum;

o

1)
2)
3)
4)
o)
6)
7)
8)
9)
0)
1)
2)

N NN N R e Rlo o o o
w NP olw NN R olw N P O

O O Y IY 9 O VIO O Y W

rm r — s /o e gres o

e

Note: 76 is just one possible starting address of array a

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Locality Example #2

int sum array cols(int a[M] [N])

{

int i, j, sum = 0;
for (J = 0; 7 < N; J++)
for (1 = 0; 1 < M; 1i++)

sum += af[i][7];

return sum;

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Locality Example #2

int sum array cols(int a[M] [N]) M=3,N=4

{ a[0][0]{|a[0](1]
int i, j, sum = 0;

a[1][0]||al1][1]

for (J = 0; J < N; 3++)
for (i = 0; i < M; i++) a[2][0]||al2][1]

sum += af[i][7];

O
\ Access Pattern:

2 stride =7
5\111&—'-]

srie-N

return sum;

o

1)
2)
3)
4)
o)
6)
7)
8)
9)
0)
1)
2)

(S =Y K] BN =Y F=) S =Y Kel DY) =Y Re)
WlwlwlNIvINd Rl ~lolol o

g A g1 g1 g1 g1 g1 g g/

(N INVRN (NOTR IQVRY [V ROVRY QTN INOURY VRN QTR INOVRY (O

e

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Locality Example #3

Ve 2o

int sum array 3D(int a[M] [N][L])
{

+» What is wrong
int i, j, k, sum = 0; with this code?

for (i = 0; i < N; 1i++)
for (7 = 0; 7 < L; J++)
for (k = 0; k < M; k++) | <« How can it be
sum += alk] [1](3);

o O fixed?

(o O
return sum;

|a[21101101l lal21[0111 [a[21101[21] [a[2101(3]

a[1][0][0]Ha[1][0][1]1Ha[1][0][21Ha[1][0][3]
a[0][01[0]Hal01[011]1Bal0[01121Bal 010131 E=] 2]

IS NS N RS 1 N R R S W S I.L-JI_IQLJ-JLJ-][B]

a[O][1]1[01HalO][1][1]1Hal0l[1][2]1Kal0]l1]l3] zz |[3]|[€—m = 2

1 - -
IAL L&V IS L[] L&] &] Io-lJ-JlL][B] m-= 1

a[0][2][0][{alOl[2][1][|alOl[2][2]] |alOl[2][3][¢——m = O

W UNIVERSITY of WASHINGTON

L15: Caches |

Locality Example #3

int sum array 3D(int a[M] [N][L])
{

int i, 3J, k, sum = 0O;

for (1 = 0, 1 < N; 1i++)
for (7 = 0; 7 < L; J++)
for (k = 0; k < M; k++)
sum += alk][1]1[J];

return sum;

}
Wnory (m L =4)

CSE351, Summer 2020

+» What is wrong

with this code?
i5+dée AL

« How can it be
fixed? |
cnnel Loops | Sierde” L

* L]

{3

a a a a a a a a a a a a a a a a a
(o1|[olf[o]f[o]|[o]f[o]f[o]|[o]|([O]|[O]|[O]|[O]|(2]|[L]|[L]|[L]]([1]
(ol oy foyf o1y fayfarjary 21212l 21y o1 ol o1y oyl
(01| (11| (21| (31| o] | [1]{ (21| (31| [o]|[2]](2]][31}(O]|[L]]|[2]]|([3]][O]

a a
(11| [1]
(11][2]
(311 0]

1 1 1 1 1

76 92 108 124 140

vV
0tid O

a6 A\

I

156

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Cache Performance Metrics

+» Huge difference between a cache hit and a cache miss

= Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

% Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate Hit tales HT

% Hit Time (HT) Misy fakes HT+MP
" Time to deliver a block in the cache to the processor

« Includes time to determine whether the block is in the cache
» Miss Penalty (MP) | — Mias Tine (117)

= Additional time required because of a miss

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Cache Performance

+» Two things hurt the performance of a cache:

= Miss rate and miss penalty

« Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+» 99% hit rate twice as good as 97% hit rate!

= Assume HT of 1 clock cycle and MP of 100 clock cycles

= 97%: AMAT = | + .03% |02 = cloct gycl=5

= 99%: AMAT = Lt -elK\90 = 9 clock cycled

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Polling Question [Egche]

Clotk 59 e cydle

+ Processor specs: |200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = HT + MA¥MP —)T, 024 So= 2 cycles
Toral e = 2 cycles K 209p4 = LOO ps

«» Which improvement would be best?

= \/ote at http://PollEv.com/pbjones
A (Vs Cocking | Casher (PL)

ya (/\6(,\,0,3 X 90 = 3% 9?5

B. Miss penalty of 40 clock cycles ((\wenge MW*"S)
|+ .024H0) X 200 = | g¥ 200 = 360PS

R of 0.015 misses/instruction ((We < betf erle)
|+ .05 ¥50) P 2002 \.75F 200 = 2506

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Can we have more than one cache?

hy woul hat?™
<+ Why would we want to do that: (U

D optimize LI

= Avoid going to memory! J/\ G Xse HT
L1

I

= Miss Rate L2
- L1 MR =3-10%

+» Typical performance numbers:

o

- L2 MR = Quite small (e.gb<1%), dependinm ;%rameters, etc.
= Hit Time ; z

« L1 HT =4 clock cycles

« L2 HT =10 clock cycles

= Miss Penalty
- P =50-200 cycles for missing in L2 & going to main memory

- Trend: increasing!

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Summary

<~ Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
= |deal case: found in cache (hit)

= Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

W UNIVERSITY of WASHINGTON

Notes Diagrams

Y2

Temporal Locality: I:I | |

d
(2 accesse
Spatial Locality: I_I T | |

\ J
1

blocks in cache

L15: Caches |

CSE351, Summer 2020

W UNIVERSITY of WASHINGTON L15: Caches | CSE351, Summer 2020

Handout: Any Locality?

0;
i = 0; 1 < n; i++)

+= ali];

return sum;

+ Data:
=" Temporal:
= Spatial:

« Instructions:

" Temporal:
= Spatial:

