
CSE351, Summer 2020L14: Structs & Alignment

Structs & Alignment
CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

http://xkcd.com/163/

http://xkcd.com/163/

CSE351, Summer 2020L14: Structs & Alignment

Administrivia

❖ Questions doc: https://tinyurl.com/CSE351-7-24

❖ hw13 due Monday (7/27) – 10:30am

❖ hw14 due Wednesday (7/29) – 10:30am

▪ This one is especially long, please start early

❖ Lab 3 due next Friday (7/31) – 11:59pm

▪ You get to write some buffer overflow exploits!

2

https://tinyurl.com/CSE351-7-24

CSE351, Summer 2020L14: Structs & Alignment

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2020L14: Structs & Alignment

Data Structures in Assembly

❖ Arrays

▪ One-dimensional

▪ Multi-dimensional (nested)

▪ Multi-level

❖ Structs

▪ Alignment

❖ Unions

4

CSE351, Summer 2020L14: Structs & Alignment

Structs in C

❖ A structured group of variables, possibly including
other structs

▪ Way of defining compound data types

5

struct song {

char *title;

int lengthInSeconds;

int yearReleased;

};

struct song song1;

song1.title = “Respect";

song1.lengthInSeconds = 148;

song1.yearReleased = 1967;

struct song song2;

song2.title = “Purple Haze";

song2.lengthInSeconds = 171;

song2.yearReleased = 1970;

struct song {
char *title;

int lengthInSeconds;

int yearReleased;

};

song1
title: “Respect"

lengthInSeconds: 148

yearReleased: 1967

song2
title: “Purple Haze"

lengthInSeconds: 171

yearReleased: 1970

CSE351, Summer 2020L14: Structs & Alignment

Struct Definitions

❖ Structure definition:

▪ Does NOT declare a variable

▪ Variable type is “struct name”

❖ Variable declarations like any other data type:

struct name name1;

struct name *pn;

struct name name_ar[3];

pointer

array

instance

struct name {

/* fields */

};

Easy to forget
semicolon!

6

CSE351, Summer 2020L14: Structs & Alignment

Scope of Struct Definition

❖ Why is the placement of struct definition important?

▪ What actually happens when you declare a variable?
• Creating space for it somewhere!

▪ Without definition, program doesn’t know how much space

❖ Almost always define structs in global scope near the
top of your C file

▪ Struct definitions follow normal rules of scope

7

struct data {

int ar[4];

long d;

};

Size = _____ bytes struct rec {

int a[4];

long i;

struct rec* next;

};Size = _____ bytes

CSE351, Summer 2020L14: Structs & Alignment

Accessing Structure Members

❖ Given a struct instance, access
member using the . operator:

struct rec r1;

r1.i = val;

❖ Given a pointer to a struct:
struct rec *r;

r = &r1; // or malloc space for r to point to

We have two options:

• Use * and . operators: (*r).i = val;

• Use -> operator for short: r->i = val;

❖ In assembly: register holds address of the first byte

▪ Access members with offsets

8

struct rec {

int a[4];

long i;

struct rec *next;

};

CSE351, Summer 2020L14: Structs & Alignment

Java connection

❖ An instance of a class is like a pointer to a struct
containing the fields

▪ (Ignoring methods and subclassing for now)

▪ So Java’s x.f is like C’s x->f or (*x).f

❖ In Java, almost everything is a pointer (“reference”) to
an object

▪ Cannot declare variables or fields that are structs or arrays

▪ Always a pointer to a struct or array

▪ So every Java variable or field is ≤ 8 bytes (but can point to
lots of data)

9

class Record { ... }

Record x = new Record();

CSE351, Summer 2020L14: Structs & Alignment

Structure Representation

❖ Characteristics

▪ Contiguously-allocated region of memory

▪ Refer to members within structure by names

▪ Fields may be of different types

10

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec *next;

};

struct rec st;

struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

Structure Representation

❖ Structure represented as block of memory

▪ Big enough to hold all of the fields

❖ Fields ordered according to declaration order

▪ Even if another ordering would be more compact

❖ Compiler determines overall size + positions of fields

▪ Machine-level program has no understanding of the
structures in the source code

11

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec *next;

};

struct rec st;

struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

r in %rdi, index in %rsi

movq 16(%rdi), %rax

ret

long get_i(struct rec *r)

{

return r->i;

}

Accessing a Structure Member

❖ Compiler knows the
offset of each member
within a struct

▪ Compute as
*(r+offset)

• Referring to absolute
offset, so no pointer
arithmetic

12

&(r->i)

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec *next;

};

struct rec st;

struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

r in %rdi

__ ,%rax

ret

Exercise: Pointer to Structure Member

13

r in %rdi

__ ,%rax

ret

long* addr_of_i(struct rec *r)

{

return &(r->i);

}

struct rec** addr_of_next(struct rec *r)

{

return &(r->next);

}

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec *next;

};

struct rec st;

struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

r in %rdi, index in %rsi

leaq (%rdi,%rsi,4), %rax

ret

int* find_addr_of_array_elem

(struct rec *r, long index)

{

return &r->a[index];

}

Generating Pointer to Array Element

❖ Generating Pointer to
Array Element

▪ Offset of each structure
member determined at
compile time

▪ Compute as:
r+4*index

14

r+4*index

&(r->a[index])

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec *next;

};

struct rec st;

struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

Review: Memory Alignment in x86-64

❖ Aligned means that any primitive object of 𝐾 bytes
must have an address that is a multiple of 𝐾

❖ Aligned addresses for data types:

15

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

CSE351, Summer 2020L14: Structs & Alignment

Alignment Principles

❖ Aligned Data

▪ Primitive data type requires 𝐾 bytes

▪ Address must be multiple of 𝐾

▪ Required on some machines; advised on x86-64

❖ Motivation for Aligning Data

▪ Memory accessed by (aligned) chunks of bytes
(width is system dependent)
• Inefficient to load or store value that spans quad word boundaries

• Virtual memory trickier when value spans 2 pages (more on this later)

▪ Though x86-64 hardware will work regardless of alignment of
data

16

CSE351, Summer 2020L14: Structs & Alignment

Structures & Alignment

❖ Unaligned Data

❖ Aligned Data

▪ Primitive data type requires 𝐾 bytes

▪ Address must be multiple of 𝐾

17

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

struct S1 {

char c;

int i[2];

double v;

};

struct S1 st;

struct S1 *p = &st;

CSE351, Summer 2020L14: Structs & Alignment

Structures & Alignment: Fragmentation

❖ Fragmentation occurs when there are
unused portions of a struct

❖ Internal Fragmentation

▪ Unused portion(s) occur between fields

❖ External Fragmentation

▪ Unused portion at the end of the struct

18

c i[0] i[1] v
3

bytes
4 bytes

p+0 p+4 p+8 p+16 p+24

struct S1 {

char c;

int i[2];

double v;

};

struct S2 {

double v;

int i[2];

char c;

};v i[0] i[1] c 7 bytes

p+0 p+8 p+12 p+16 p+24

CSE351, Summer 2020L14: Structs & Alignment

Satisfying Alignment with Structures (1)

❖ Within structure:
▪ Must satisfy each element’s alignment requirement

❖ Overall structure placement
▪ Each structure has alignment requirement 𝐾max

• 𝐾max = Largest alignment of any element

• Counts array elements individually as elements

❖ Example:
▪ 𝐾max = 8, due to double element

19

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

struct S1 {

char c;

int i[2];

double v;

};

struct S1 st;

struct S1 *p = &st;

CSE351, Summer 2020L14: Structs & Alignment

Satisfying Alignment with Structures (2)

❖ Can find offset of individual fields
using offsetof()
▪ Need to #include <stddef.h>

▪ e.g. offsetof(struct S2,c) returns 16

❖ For largest alignment requirement 𝐾max,
overall structure size must be multiple of 𝐾max
▪ Compiler will add padding at end of

structure to meet overall structure
alignment requirement

20

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {

double v;

int i[2];

char c;

};

struct S2 st;

struct S2 *p = &st;

Multiple of 8Multiple of 8

CSE351, Summer 2020L14: Structs & Alignment

Arrays of Structures

❖ Overall structure size multiple of 𝐾𝑚𝑎𝑥
❖ Satisfy alignment requirement

for every element in array

21

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {

double v;

int i[2];

char c;

};

struct S2 a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CSE351, Summer 2020L14: Structs & Alignment

Alignment of Structs

❖ Compiler will do the following:

▪ Maintains declared ordering of fields in struct

▪ Each field must be aligned within the struct
(may insert padding)
• offsetof can be used to get actual field offset

▪ Overall struct must be aligned according to largest field

▪ Total struct size must be multiple of its alignment
(may insert padding)
• sizeof should be used to get true size of structs

22

CSE351, Summer 2020L14: Structs & Alignment

How the Programmer Can Save Space

❖ Compiler must respect order elements are declared in

▪ Sometimes the programmer can save space by declaring
large data types first

23

struct S4 {

char c;

int i;

char d;

};

struct S4 st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

struct S5 {

int i;

char c;

char d;

};

struct S5 st;

CSE351, Summer 2020L14: Structs & Alignment

Polling Question [Structs]

❖ Minimize the size of the struct by re-ordering the vars

❖ What are the old and new sizes of the struct?
sizeof(struct old) = _____ sizeof(struct new) = _____

A. 16 bytes

B. 22 bytes

C. 28 bytes

D. 32 bytes

E. We’re lost…
24

struct old {

int i;

short s[3];

char *c;

float f;

};

struct new {

int i;

______ ______;

______ ______;

______ ______;

};

Vote on sizeof(struct old):
http://pollev.com/pbjones

http://pollev.com/pbjones

CSE351, Summer 2020L14: Structs & Alignment

Aside: More Struct Definitions

❖ Can combine struct and instance definitions:

❖ Defines a struct type (struct name), an instance of
that type (st), and a pointer to that type (p)

❖ This syntax is difficult to read
▪ Porter doesn’t like it in most situations because it conflates a type

definition with an instance definition. But that’s just his opinion…

▪ We are showing it because you may see it in code in the future
(and on the homework ☺)

25

struct name {

/* fields */

} st, *p = &st;

struct name {

/* fields */

};

struct name st;

struct name *p = &st; These parts do the same thing

CSE351, Summer 2020L14: Structs & Alignment

Aside: Typedef in C

❖ A way to create an alias for another data type:
typedef <data type> <alias>;

▪ After typedef, the alias can be used interchangeably with
the original data type

▪ e.g. typedef unsigned long int uli;

❖ Joint struct definition and typedef

▪ Don’t need to give struct a name in this case

▪ typedef alone doesn’t create an instance of the struct!

26

typedef struct {

/* fields */

} name;

name n1;

struct nm {

/* fields */

};

typedef struct nm name;

name n1;

CSE351, Summer 2020L14: Structs & Alignment

Summary

❖ Arrays in C

▪ Aligned to satisfy every element’s alignment requirement

❖ Structures

▪ Allocate bytes for fields in order declared by programmer

▪ Pad in middle to satisfy individual element alignment
requirements

▪ Pad at end to satisfy overall struct alignment requirement

27

