CSE351, Summer 2020

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Structs & Alignment

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu

Callum Walker
Sam Wolfson MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME

Tim Mandzyuk ARE FROM ONE, 50ME FROM ZERD.

DIFFERENT TASKS CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGOR ITHMS
EXPERT DONALD KNUTH,

“WHO ARE You? How DID.
YOU GET IN MY HOUSE?
/

WAIT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

/ .

http://xkcd.com/163/

http://xkcd.com/163/

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Administrivia
% Questions doc: https://tinyurl.com/CSE351-7-24

%+ hw13 due Monday (7/27) — 10:30am
<+ hw14 due Wednesday (7/29) — 10:30am

" This one is especially long, please start early

+» Lab 3 due next Friday (7/31) — 11:59pm

" You get to write some buffer overflow exploits!

https://tinyurl.com/CSE351-7-24

YA UNIVERSITY of WASHINGTON

Roadmap

L14: Structs & Alignment

CSE351, Summer 2020

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
— - — Memory & caches
Assembly c;;et_mpc_l;1] Processes
. pushq srbp .
language: movq srsp, $rbp Virtual memory
... Memory allocation
popq srbp Javavs. C
ret *
Machine 0111010000011000
de: 100011010000010000000010
Code. 1000100111000010
110000011111101000011111
Computer

system:

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Data Structures in Assembly

« Arrays
" One-dimensional
® Multi-dimensional (nested)
" Multi-level
« Structs
= Alignment

YW UNIVERSITY of WASHINGTON

Structs in C

L14: Structs & Alignment

CSE351, Summer 2020

« A structured group of variables, possibly including

other structs

" Way of defining compound data types

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

b g

struct song songl;
songl.title = “Respect";

songl.lengthInSeconds = 148;

songl.yearReleased = 1967;

struct song song2;

songZ.title = “Purple Haze";
songZ.lengthInSeconds = 171;

songZ.yearReleased = 1970;

p
struct song {
char *title;
int lengthInSeconds;
int yearReleased;

Y

\ S
songl
title: “Respect"
lengthInSeconds: 148
yearReleased: 1967
\ V.
song?2
title: “Purple Haze"
lengthInSeconds: 171
yearReleased: 1970
\ V.

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Struct Definitions

« Structure definition:
struct name {

= Does NOT declare a variable /* fields */
} 5 —

= Variable type is “struct name”

—— Easy to forget
semicolon!

+ Variable declarations like any other data type:

struct name namel; € instance
struct name *pn; < pointer
struct name name ar[3];<— array

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Scope of Struct Definition

+» Why is the placement of struct definition important?

= What actually happens when you declare a variable?
- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |«— Size= bytes | struct rec {
int ar[4]; int af[4];
long d; long 1i;
}i struct rec* next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

CSE351, Summer 2020

L14: Structs & Alignment

YW UNIVERSITY of WASHINGTON

Accessing Structure Members

+ @Given a struct instance, access

member using the . operator: |struct rec {
int a[4];
struct rec rl; long i;
rl.i = val; struct rec *next;
+ Given a pointer to a struct: &
struct rec *r;
r = &rl; // or malloc space for r to point to
We have two options:
- Use * and . operators: (*r).i = val;
- Use —-> operator for short: r->i = val;

+~ In assembly: register holds address of the first byte

= Access members with offsets

CSE351, Summer 2020

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

class Record { ... }

"ava ConnECtion Record x = new Record() ;

+ An instance of a class is like a pointer to a struct

containing the fields
= (Ignoring methods and subclassing for now)
" SoJava’s x.f islikeC's x->f or (*x).f

+ In Java, almost everything is a pointer (“reference”) to
an object
= Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is £ 8 bytes (but can point to
lots of data)

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structure Representation

struct rec {

int af(4]; r

long i;

struct rec *next; M
} s 2 1 next
struct rec st; 0 16 24 32
struct rec *r = &st;

+ Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
" Fields may be of different types

10

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structure Representation

struct rec {

int af(4]; r

long i;

struct rec *next;
} s 2 1 next
struct rec st; 0 16 24 32
struct rec *r = &st;

+ Structure represented as block of memory
= Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

11

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {
int al4];
long 1;
struct rec *next;
} i
struct rec st;
struct rec *r = &st;

+» Compiler knows the
offset of each member
within a struct

" Compute as
*(r+offset)
- Referring to absolute

offset, so no pointer
arithmetic

&(r—>1)

\ 4

next

16 24 32

long get 1 (struct rec *r)

{

return r—->i;

}

r in %rdi, index 1in %rsi

movq 16 (srdi), S%rax
ret

CSE351, Summer 2020

12

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Summer 2020

Exercise: Pointer to Structure Member

struct rec {

int af(4]; r

long i;

struct rec *next; M
} s 2 1 next
struct rec st; 0 16 24 32
struct rec *r = &st;

long* addr of 1 (struct rec *r)

{

r 1n $rdi

return & (r->next) ;

}

o
, $rax
return & (r->1); r o
} ret
struct rec** addr of next (struct rec *r) # r 1in 3%rdi
{
, srax

ret

13

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Generating Pointer to Array Element

struct rec {

int al4];

long 1;

struct rec *next;
} i
struct rec st;

struct rec *r = &st;

« Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

T r+4*index
a i next
0 16 24 32

CSE351, Summer 2020

int* find addr of array elem
(struct rec *r, long index)

{

return &r—->a[index];

) N\

p]
&(r->al[index])

r 1n %rdi, index 1in $%rsi
leag (%rdi,%rsi,4), Srax

ret

14

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Review: Memory Alighment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types:

1 char No restrictions

2 short Lowest bit must be zero: ...0, ()
. oo ¢

4 1nt, float Lowest 2 bits zero: ...00, \::jsi\f\?;& o

8 long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

“mhlip\e of ' means ho remainder Lhea Vor lidde 1)\/,
Sin(e ‘< 13 /N ()owe(O’F Z) d\iv‘\d‘u\:\ \b\/ K s erlu'\\/«\eyf\' 2 9,0'%20(>.

Mo remander Mean) Nno Ueggl\')' S " 'oﬁh o\uwh,_g the o‘]f(\—('\ — o\\\ ZevoJ (n 'omﬁ QO;(ZOO ID&J -

15

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries

- Virtual memory trickier when value spans 2 pages (more on this later)

" Though x86-64 hardware will work regardless of alignment of
data

16

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Structures & Alignment

+» Unaligned Data

c i[0] i[1] %
p ptl pt+5 p+9 p+17

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

CSE351, Summer 2020

struct S1 {
char c;
int i[2];
double v;

};

struct S1 st;

struct S1 *p

= &Sst;

C i[0] i[1] v
p+0 Ok 4 p+8 p+16 p+24
Multiple of\{ Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

17

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structures & Alignment: Fragmentation

+» Fragmentation occurs when there are
unused portions of a struct

+ Internal Fragmentation struct Sl |
char c;
= Unused portion(s) occur between fields int i[2];
double v;
C 1[0] | 201] \ };
p+0 p+4 p+8 p+16 p+24
+» External Fragmentation struct S2 {
= . double v;
Unused portion at the end of the struct int 1[2];
char c;
v 1[0] 1[1] |c } s

p+0 p+8 p+12 pt+t16 p+24 18

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Satisfying Alignment with Structures (1)

struct S1 {

« W.ithin structure: char c;
= Must satisfy each element’s alignment requirement int 1[2];
double v;
+ Qverall structure placement ;s
= Each structure has alighment requirement K.« struct S1 st;

struct S1 *p = &st;

« Kiax = Largest alignment of any element

- Counts array elements individually as elements

+» Example:
Kyax =8, due to double element

C 1i[0] i[1] \%
p+0 Ok 4 p+8 p+16 p+24

a A A

Multiple of\Q Multiple of 8
Multiple of 8 internal fragmentation

19

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment

CSE351, Summer 2020

Satisfying Alignment with Structures (2)

«» Can find offset of individual fields

using offsetof ()

" Needto #include <stddef.h>
" e.g.offsetof (struct S2,c) returns 16

struct S2 {
double v;
int i[2];
char c;

};

struct S2 st;

struct S2 *p = &st;
+ For largest alignment requirement K.+,
overall structure size must be multiple of K.«
= Compiler will add padding at end of
structure to meet overall structure
alignment requirement
\ 1[0] 1[1] C
p+0 p+8 pt+t16 p+24
Multiple of 8 external fragmentation Multiple of 8

20

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Arrays of Structures

struct S2 {
]] double v;
+ Overall structure size multiple of K,,, ;. int 1[2];
. . . char c;
+ Satisfy alignment requirement s
for every element in array struct S2 a[10];
al0] all] al2] ¢ e
a+0 at+24 at48 at+72

a+24 a+32 a+40 / a+48

external fragmentation .

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

" Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= Qverall struct must be aligned according to largest field

" Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

22

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment CSE351, Summer 2020

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 {

struct S5 {

char c; int 1i;
int - | oo
char d; char d;

b g

struct S4 st;

1

d

Y
12 bytes

I 2
struct S5 st;

YW UNIVERSITY of WASHINGTON

Polling Question [Structs]

*

struct old {
int i;
short s[3];

char *c;

float f;
I g

L14: Structs & Alignment

)

CSE351, Summer 2020

Vote on sizeof (struct old):
http://pollev.com/pbjones

+» Minimize the size of the struct by re-ordering the vars

struct new {
int i;

b

What are the old and new sizes of the struct?

m o O W >

sizeof (struct old) =

22 bytes
28 bytes
32 bytes
We're lost...

sizeof (struct

new) =

24

http://pollev.com/pbjones

L14: Structs & Alignment CSE351, Summer 2020

YW UNIVERSITY of WASHINGTON

Aside: More Struct Definitions

«» Can combine struct and instance definitions:

struct name { struct name {
/* fields */ /* fields */
¥ } st, *p = &st;

struct name st;
struct name *p = &st;

T These parts do the same thing

+ Defines a struct type (struct name), an instance of
that type (st), and a pointer to that type (p)

+ This syntax is difficult to read

= Porter doesn’t like it in most situations because it conflates a type
definition with an instance definition. But that’s just his opinion...

" We are showing it because you may see it in code in the future
(and on the homework ©)

25

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Aside: Typedef in C

+» A way to create an alias for another data type:
typedef <data type> <alias>;

= After typedef, the alias can be used interchangeably with
the original data type

" e.g. typedef unsigned long int ulzi;
% Joint struct definition and typedef

" Don’t need to give struct a name in this case
= typedef alone doesn’t create an instance of the struct!

struct nm { typedef struct {
/* fields */ — /* fields */

I } name;

typedef struct nm name; name nl;

name nl;

26

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Summer 2020

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes for fields in order declared by programmer

= Pad in middle to satisfy individual element alignment
requirements

= Pad at end to satisfy overall struct alignment requirement

27

