
CSE351, Summer 2020L14: Structs & Alignment

Structs	&	Alignment
CSE	351	Summer	2020

Instructor:
Porter	Jones

Teaching	Assistants:
Amy	Xu
Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

http://xkcd.com/163/

CSE351, Summer 2020L14: Structs & Alignment

Administrivia
v Questions	doc:	https://tinyurl.com/CSE351-7-24

v hw13	due	Monday	(7/27)	– 10:30am
v hw14	due	Wednesday	(7/29)	– 10:30am

§ This	one	is	especially	long,	please	start	early

v Lab	3	due	next	Friday	(7/31)	– 11:59pm	
§ You	get	to	write	some	buffer	overflow	exploits!

2

CSE351, Summer 2020L14: Structs & Alignment

Roadmap

3

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L14: Structs & Alignment

Data	Structures	in	Assembly

v Arrays
§ One-dimensional
§ Multi-dimensional	(nested)
§ Multi-level

v Structs
§ Alignment

v Unions

4

CSE351, Summer 2020L14: Structs & Alignment

Structs in	C

v A	structured	group	of	variables,	possibly	including	
other	structs
§ Way	of	defining	compound	data	types

5

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

};

struct song song1;
song1.title = “Respect";
song1.lengthInSeconds = 148;
song1.yearReleased = 1967;

struct song song2;
song2.title = “Purple Haze";
song2.lengthInSeconds = 171;
song2.yearReleased = 1970;

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

};

song1
title: “Respect"
lengthInSeconds: 148
yearReleased: 1967

song2
title: “Purple Haze"
lengthInSeconds: 171
yearReleased: 1970

CSE351, Summer 2020L14: Structs & Alignment

Struct Definitions

v Structure	definition:
§ Does	NOT	declare	a	variable
§ Variable	type	is	“struct name”

v Variable	declarations	like	any	other	data	type:
struct name name1;
struct name *pn;
struct name name_ar[3];

pointer
array

instance

struct name {
/* fields */

};

Easy	to	forget	
semicolon!

6

CSE351, Summer 2020L14: Structs & Alignment

Scope	of	Struct Definition

v Why	is	the	placement	of	struct	definition	important?
§ What	actually	happens	when	you	declare	a	variable?

• Creating	space	for	it	somewhere!

§ Without	definition,	program	doesn’t	know	how	much	space

v Almost	always	define	structs in	global	scope	near	the	
top	of	your	C	file
§ Struct definitions	follow	normal	rules	of	scope

7

struct data {
int ar[4];
long d;

};

Size	=	_____	bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size	=	_____	bytes

CSE351, Summer 2020L14: Structs & Alignment

Accessing	Structure	Members

v Given	a	struct instance,	access	
member	using	the	. operator:

struct rec r1;
r1.i = val;

v Given	a	pointer to	a	struct:			
struct rec *r;
r = &r1; // or malloc space for r to point to

We	have	two	options:
• Use		* and		. operators: (*r).i = val;

• Use		-> operator	for	short:								r->i = val;

v In	assembly: register	holds	address	of	the	first	byte
§ Access	members	with	offsets

8

struct rec {
int a[4];
long i;
struct rec *next;

};

CSE351, Summer 2020L14: Structs & Alignment

Java	connection

v An	instance	of	a	class	is	like	a	pointer	to a	struct	
containing	the	fields
§ (Ignoring	methods	and	subclassing for	now)
§ So	Java’s		x.f is	like	C’s		x->f or		(*x).f

v In	Java,	almost	everything	is	a	pointer	(“reference”)	to	
an	object
§ Cannot	declare	variables	or	fields	that	are	structs or	arrays
§ Always	a	pointer to	a	struct	or	array
§ So	every	Java	variable	or	field	is	≤	8	bytes	(but	can	point	to	
lots	of	data)

9

class Record { ... }
Record x = new Record();

CSE351, Summer 2020L14: Structs & Alignment

Structure	Representation

v Characteristics
§ Contiguously-allocated	region	of	memory
§ Refer	to	members	within	structure	by	names
§ Fields	may	be	of	different	types

10

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};
struct rec st;
struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

Structure	Representation

v Structure	represented	as	block	of	memory
§ Big	enough	to	hold	all	of	the	fields

v Fields	ordered	according	to	declaration	order
§ Even	if	another	ordering	would	be	more	compact

v Compiler	determines	overall	size	+	positions	of	fields
§ Machine-level	program	has	no	understanding	of	the	
structures	in	the	source	code	

11

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};
struct rec st;
struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

r in %rdi, index in %rsi
movq 16(%rdi), %rax
ret

long get_i(struct rec *r)
{
return r->i;

}

Accessing	a	Structure	Member

v Compiler	knows	the	
offset	of	each	member	
within	a	struct
§ Compute	as	
*(r+offset)
• Referring	to	absolute	
offset,	so	no	pointer	
arithmetic

12

&(r->i)

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};
struct rec st;
struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

r in %rdi

__ ,%rax

ret

Exercise:		Pointer	to	Structure	Member

13

r in %rdi

__ ,%rax

ret

long* addr_of_i(struct rec *r)
{

return &(r->i);
}

struct rec** addr_of_next(struct rec *r)
{

return &(r->next);
}

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};
struct rec st;
struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_addr_of_array_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating	Pointer	to	Array	Element

v Generating	Pointer	to	
Array	Element
§ Offset	of	each	structure	
member	determined	at	
compile	time

§ Compute	as:		
r+4*index

14

r+4*index

&(r->a[index])

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};
struct rec st;
struct rec *r = &st;

CSE351, Summer 2020L14: Structs & Alignment

Review:		Memory	Alignment	in	x86-64

v Alignedmeans	that	any	primitive	object	of	𝐾 bytes	
must	have	an	address	that	is	a	multiple	of	𝐾

v Aligned	addresses	for	data	types:

15

𝐾 Type Addresses

1 char No	restrictions

2 short Lowest	bit	must be	zero:	…02
4 int, float Lowest	2	bits	zero: …002
8 long, double, * Lowest	3	bits	zero:	…0002
16 long double Lowest	4	bits	zero:	…00002

CSE351, Summer 2020L14: Structs & Alignment

Alignment	Principles

v Aligned	Data
§ Primitive	data	type	requires	𝐾 bytes
§ Address	must	be	multiple	of	𝐾
§ Required	on	some	machines;	advised	on	x86-64

v Motivation	for	Aligning	Data
§ Memory	accessed	by	(aligned)	chunks	of	bytes	
(width	is	system	dependent)
• Inefficient	to	load	or	store	value	that	spans	quad	word	boundaries
• Virtual	memory	trickier	when	value	spans	2	pages	(more	on	this	later)

§ Though	x86-64	hardware	will	work	regardless	of	alignment	of	
data

16

CSE351, Summer 2020L14: Structs & Alignment

Structures	&	Alignment

v Unaligned	Data

v Aligned	Data
§ Primitive	data	type	requires	𝐾 bytes
§ Address	must	be	multiple	of	𝐾

17

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal	fragmentation

c i[0] i[1] v3	bytes 4	bytes

p+0 p+4 p+8 p+16 p+24

Multiple	of	4 Multiple	of	8
Multiple	of	8 Multiple	of	8

struct S1 {
char c;
int i[2];
double v;

};
struct S1 st;
struct S1 *p = &st;

CSE351, Summer 2020L14: Structs & Alignment

Structures	&	Alignment:	Fragmentation

v Fragmentation	occurs	when	there	are	
unused	portions	of	a	struct

v Internal	Fragmentation
§ Unused	portion(s)	occur	between fields

v External	Fragmentation
§ Unused	portion	at	the	end	of	the	struct

18

c i[0] i[1] v3	
bytes 4	bytes

p+0 p+4 p+8 p+16 p+24

struct S1 {
char c;
int i[2];
double v;

};

struct S2 {
double v;
int i[2];
char c;

};v i[0] i[1] c 7	bytes

p+0 p+8 p+12 p+16 p+24

CSE351, Summer 2020L14: Structs & Alignment

Satisfying	Alignment	with	Structures	(1)

v Within structure:
§ Must	satisfy	each	element’s	alignment	requirement

v Overall structure	placement
§ Each	structure has	alignment	requirement	𝐾!"#

• 𝐾!"# =	Largest	alignment	of	any	element
• Counts	array	elements	individually	as	elements

v Example:
§ 𝐾!"# =	8,	due	to	double element

19

c i[0] i[1] v3	bytes 4	bytes

p+0 p+4 p+8 p+16 p+24

Multiple	of	4 Multiple	of	8
Multiple	of	8 internal	fragmentation

struct S1 {
char c;
int i[2];
double v;

};
struct S1 st;
struct S1 *p = &st;

CSE351, Summer 2020L14: Structs & Alignment

Satisfying	Alignment	with	Structures	(2)

v Can	find	offset	of	individual	fields	
using	offsetof()
§ Need	to	#include <stddef.h>
§ e.g.	offsetof(struct S2,c) returns	16

v For	largest	alignment	requirement	𝐾"#$,
overall	structure	size	must	be	multiple	of	𝐾"#$
§ Compiler	will	add	padding	at	end	of	

structure	to	meet	overall	structure	
alignment	requirement

20

v i[0] i[1] c 7	bytes

p+0 p+8 p+16 p+24

external	fragmentation

struct S2 {
double v;
int i[2];
char c;

};
struct S2 st;
struct S2 *p = &st;

Multiple	of	8Multiple	of	8

CSE351, Summer 2020L14: Structs & Alignment

Arrays	of	Structures

v Overall	structure	size	multiple	of	𝐾"#$
v Satisfy	alignment	requirement	
for	every	element	in	array

21

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

};
struct S2 a[10];

v i[0] i[1] c 7	bytes

a+24 a+32 a+40 a+48

external	fragmentation

CSE351, Summer 2020L14: Structs & Alignment

Alignment	of	Structs

v Compiler	will	do	the	following:
§ Maintains	declared	ordering of	fields	in	struct
§ Each	fieldmust	be	aligned	within the	struct
(may	insert	padding)
• offsetof can	be	used	to	get	actual	field	offset

§ Overall	struct	must	be	aligned according	to	largest	field
§ Total	struct	sizemust	be	multiple	of	its	alignment	
(may	insert	padding)
• sizeof should	be	used	to	get	true	size	of	structs

22

CSE351, Summer 2020L14: Structs & Alignment

How	the	Programmer	Can	Save	Space

v Compiler	must	respect	order	elements	are	declared	in
§ Sometimes	the	programmer	can	save	space	by	declaring	
large	data	types	first

23

struct S4 {
char c;
int i;
char d;

};
struct S4 st;

c i3	bytes d 3	bytes ci d 2	bytes

12	bytes 8	bytes

struct S5 {
int i;
char c;
char d;

};
struct S5 st;

CSE351, Summer 2020L14: Structs & Alignment

Polling	Question	[Structs]	

v Minimize	the	size	of	the	struct by	re-ordering	the	vars

v What	are	the	old	and	new	sizes	of	the	struct?
sizeof(struct old) =	_____ sizeof(struct new) =	_____

A. 16	bytes
B. 22	bytes
C. 28	bytes
D. 32	bytes
E. We’re	lost…

24

struct old {
int i;

short s[3];

char *c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

Vote	on	sizeof(struct old):
http://pollev.com/pbjones

CSE351, Summer 2020L14: Structs & Alignment

Aside:	More	Struct	Definitions
v Can	combine	struct	and	instance	definitions:

v Defines	a	struct	type	(struct name),	an	instance	of	
that	type	(st),	and	a	pointer	to	that	type	(p)

v This	syntax	is	difficult	to	read
§ Porter	doesn’t	like	it	in	most situations	because	it	conflates	a	type	

definition	with	an	instance	definition.	But	that’s	just	his	opinion…
§ We	are	showing	it	because	you	may	see	it	in	code	in	the	future	

(and	on	the	homework	J)

25

struct name {
/* fields */

} st, *p = &st;

struct name {
/* fields */

};
struct name st;
struct name *p = &st; These	parts	do	the	same	thing

CSE351, Summer 2020L14: Structs & Alignment

Aside:	Typedef	in	C

v A	way	to	create	an	alias for	another	data	type:
typedef <data type> <alias>;
§ After	typedef,	the	alias	can	be	used	interchangeably	with	
the	original	data	type

§ e.g.	typedef unsigned long int uli;

v Joint	struct	definition	and	typedef
§ Don’t	need	to	give	struct	a	name	in	this	case
§ typedef alone	doesn’t	create	an	instance	of	the	struct!

26

typedef struct {
/* fields */

} name;
name n1;

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

CSE351, Summer 2020L14: Structs & Alignment

Summary

v Arrays	in	C
§ Aligned	to	satisfy	every	element’s	alignment	requirement

v Structures
§ Allocate	bytes	for	fields	in	order	declared	by	programmer
§ Pad	in	middle	to	satisfy	individual	element	alignment	
requirements

§ Pad	at	end	to	satisfy	overall	struct	alignment	requirement

27

CSE351, Summer 2020L14: Structs & Alignment

Data	Structures	in	Assembly

v Arrays
§ One-dimensional
§ Multi-dimensional	(nested)
§ Multi-level

v Structs
§ Alignment

v Unions

28

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L14: Structs & Alignment

Unions

v Only	allocates	enough	space	for	the	largest	element	
in	union

v Can	only	use	one	member	at	a	time

29

union U {
char c;
int i[2];
double v;

} u, *up = &u;

struct S {
char c;
int i[2];
double v;

} s, *sp = &s;

c 3	bytes i[0] i[1] 4	bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

This	is	extra	
(non-testable)	

material

CSE351, Summer 2020L14: Structs & Alignment

Accessing	Array	Elements
v Compute	start	of	array	element	as:	12*index
§ sizeof(S3) = 12, including	alignment	padding

v Element	j is	at	offset	8	within	structure
v Assembler	gives	offset		a+8

30

short get_j(int index)
{
return a[index].j;

}

%rdi = index
leaq (%rdi,%rdi,2),%rax # 3*index
movzwl a+8(,%rax,4),%eax

a[0] • • • a[index] • • •

a+0 a+12 a+12*index

i 2	bytes v j 2	bytes
a+12*index

a+12*index+8

struct S3 {
short i;
float v;
short j;

} a[10];

CSE351, Summer 2020L14: Structs & Alignment

Roadmap

31

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L14: Structs & Alignment

CPU

Assembly	Programmer’s	View

v Programmer-visible	state
§ PC:		the	Program	Counter	(%rip in	x86-64)

• Address	of	next	instruction
§ Named	registers

• Together	in	“register	file”
• Heavily	used	program	data

§ Condition	codes
• Store	status	information	about	most	recent	
arithmetic	operation

• Used	for	conditional	branching 32

%rip

MemoryAddresses

Data

Instructions

v Memory
§ Byte-addressable	array
§ Code	and	user	data
§ Includes	the	Stack	(for	

supporting	procedures)

CF ZF

SF OF

Instructions

Literals

Static	Data

Dynamic	Data
(Heap)

Stack%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rsp
%rbp

CSE351, Summer 2020L14: Structs & Alignment

x86-64	Instructions

v Data	movement
§ mov, movs, movz, ...

v Arithmetic
§ add, sub, shl, sar, lea, ...

v Control	flow
§ cmp, test, j*, set*, ...

v Stack/procedures
§ push, pop, call, ret, ...

33

CSE351, Summer 2020L14: Structs & Alignment

Turning	C	into	Object	Code
v Code	in	files p1.c p2.c
v Compile	with	command:	 gcc -Og p1.c p2.c -o p

§ Use	basic	optimizations	(-Og)
§ Put	resulting	machine	code	in	file	p

34

text

text

binary

binary

Compiler	(gcc –Og -S)

Assembler	(gcc -c or	as)

Linker	(gcc or	ld)

C	program	(p1.c p2.c)

Asm program	(p1.s p2.s)

Object	program	(p1.o p2.o)

Executable	program	(p)

Static	libraries	(.a)

CSE351, Summer 2020L14: Structs & Alignment

Assembling

v Executable	has	addresses

§ gcc -g pcount.c –o pcount
§ objdump –d pcount

35

00000000004004f6 <pcount_r>:
4004f6: b8 00 00 00 00 mov $0x0,%eax
4004fb: 48 85 ff test %rdi,%rdi
4004fe: 74 13 je 400513 <pcount_r+0x1d>
400500: 53 push %rbx
400501: 48 89 fb mov %rdi,%rbx
400504: 48 d1 ef shr %rdi
400507: e8 ea ff ff ff callq 4004f6 <pcount_r>
40050c: 83 e3 01 and $0x1,%ebx
40050f: 48 01 d8 add %rbx,%rax
400512: 5b pop %rbx
400513: f3 c3 rep ret

assem
bler

CSE351, Summer 2020L14: Structs & Alignment

A	Picture	of	Memory	(64-bit	view)

36

0|8 1|9 2|a 3|b 4|c 5|d 6|e 7|f

0x00

0x08

0x10

... ...

b8 00 0x4004f0

00 00 00 48 85 ff 74 13 0x4004f8

53 48 89 fb 48 d1 ef e8 0x400500

ea ff ff ff 83 e3 01 48 0x400508

01 d8 5b f3 c3 0x400510

00000000004004f6 <pcount_r>:
4004f6: b8 00 00 00 00 mov $0x0,%eax
4004fb: 48 85 ff test %rdi,%rdi
4004fe: 74 13 je 400513 <pcount_r+0x1d>
400500: 53 push %rbx
400501: 48 89 fb mov %rdi,%rbx
400504: 48 d1 ef shr %rdi
400507: e8 ea ff ff ff callq 4004f6 <pcount_r>
40050c: 83 e3 01 and $0x1,%ebx
40050f: 48 01 d8 add %rbx,%rax
400512: 5b pop %rbx
400513: f3 c3 rep ret

CSE351, Summer 2020L14: Structs & Alignment

c i[0] i[1] v3	bytes 6	bytes

fp+0 fp+4 fp+16 fp+24 fp+32

multiple	of	4 multiple	of	8

multiple	of	8
internal	fragmentation external	fragmentation

i[2] s

fp+26

multiple	of	8

multiple	of	2

