W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structs & Alignment

CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu
Callum Walker
Sam Wolfson

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
Tim Mandzyuk ARE FROM ONE, SOME FROM ZERD.
DIFFERENT TASks CALL FOR WAIT WHAT?
DIFFERENT CONVENTIONS. TO)
QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE
EXPERT DONALD KNUTH, SAID WHEN | ASKED

“\WHO ARE You? HOw DID Him ABOUT IT.

YOU GET IN MY HOUSE?" /
/

http://xkcd.com/163/

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Administrivia
«» Questions doc: https://tinyurl.com/CSE351-7-24

2+ hw13 due Monday (7/27) — 10:30am
<+ hw14 due Wednesday (7/29) — 10:30am

" This one is especially long, please start early

% Lab 3 due next Friday (7/31) - 11:59pm

" You get to write some buffer overflow exploits!

W UNIVERSITY of WASHINGTON

Roadmap

C:

L14: Structs & Alignment

Java:

CSE351, Summer 2020

Memory & data

car *c =
c—->miles

free(c);

malloc (sizeof (car)) ;
100;
c->gals = 17;

float mpg

get_mpg(c) ;

Car ¢ = new Car();
c.setMiles (100);
c.setGals (17);
float mpg =

c.getMPG() ;

Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs

——

—

Assembly
language:

get mpg:
pushqg
movq

srbp

rsp, S%Srbp

srbp
|

Popq
ret

Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

Machine
code:

Computer
system:

v

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Windows 10

\/
/\ A

. OS X Yosemite \A/

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Data Structures in Assembly

< Arrays
" One-dimensional
® Multi-dimensional (nested)
" Multi-level
+» Structs
= Alignment

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structs in C

+ A structured group of variables, possibly including
other structs
= Way of defining compound data types

struct song {

-
char *title; struct song {

. char *title;
int lengthInSeconds; int lengthInSeconds;

int yearReleased; int yearReleased;

bi CK

struct song songl; (songl

songl.title = “Respect"; title: “Respect"
songl.lengthInSeconds = 148; lengthInSeconds: 148
songl.yearReleased = 1967; yearReleased: 1907

L

struct song song2; rsong2

song2.title = “Purple Haze"; title: “Purple Haze"

song?2.lengthInSeconds = 171; lengthinSeconds: 171
yearReleased: 1970

song?2.yearReleased = 1970; .)

W UNIVERSITY of WASHINGTON L14: Structs & Alignment

Struct Definitions

« Structure definition:

® Does NOT declare a variable
= Variable type is “struct name”

CSE351, Summer 2020

struct ngme {
/* fields */
} ;€

— Easy to forget
semicolon!

« Variable declarations like any other data type:

struct name namel; € instance
struct name *pn; < pointer
struct name name ar|[3];<— array

Jaat ket x
1)\4’ 'FP)/

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Scope of Struct Definition

CSE351, Summer 2020

+» Why is the placement of struct definition important?

= What actually happens when you declare a variable?
- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data {

YUY int ar[4];
A long d;

¥

\ -
<—¥§ze= 1\" bytes

K4int a[4];

struct rec {

2 long 1;
A struct rec* next;

) g

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Accessing Structure Members

+» @Given a struct instance, access

member using the . operator: |struct rec |
int al4d];
struct rec rl; long i;

rl.i = val; struct rec *next;

. . } i
«» @Given a pointer to a struct:

struct rec *r;

r = &rl; // or malloc space for r to point to
We have two options: O
- Use * and . operators: (*r) 71 = val ‘d‘(f) (el ("?’
- Use —> operator for short: r=>1 = val;\pks Ly4le

+~ In assembly: register holds address of the first byte

= Access members with offsets 5>
)

k—‘;) D LQ\MQ’;

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

class Record { ... }

Java COnI‘IECtiOH Record x = new Record() ;
T ftoces on oS5

+ An instance of a class is like a pointer to a struct
containing the fields
= (Ignoring methods and subclassing for now)
" SoJava’s x.f islikeC's x->f or (*x).f

+ In Java, almost everything is a pointer (“reference”) to
an object

= Cannot declare variables or fields that are structs or arrays
= Always a pointer to a struct or array

= So every Java variable or field is < 8 bytes (but can point to
lots of data)

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structure Representation

struct rec {
| int a[4]; r
?>long i;
% struct rec *next;
} i 1 next

struct rec st; ¥16 +24 r+32
struct rec *r = &st;

« Characteristics

= Contiguously-allocated region of memory

= Refer to members within structure by names
= Fields may be of different types

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Structure Representation

struct rec {
\)int a[4]; r

g%hong i; <i:> {EZ) ‘ >
J3/)struct rec *next; M) €3

. L \@‘-o.m f£3) 1 next
struct rec st; 0 16 24 32
struct rec *r = é&st;

+ Structure represented as block of memory
= Big enough to hold all of the fields

Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the
structures in the source code

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {

int af4];

long 1i;

struct rec *next;
} i
struct rec st;

struct rec *r = &st;

«» Compiler knows the

offset of each member

within a struct

"= Compute as
*(r+offset)

- Referring to absolute
offset, so no pointer
arithmetic

}9_;0/

r &(r—>1)

a ' next
0 16 24 32

CSE351, Summer 2020

long get 1 (struct rec *r)

{ X[+ 16)

return r—>i;
}

MJe in gdi, index 1n
movqg 16 (%rdi),

—
ret

$rsi

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

CSE351, Summer 2020

Exercise: Pointer to Structure Member

struct rec {
int af4];
long 1i;
struct rec *next;

b

struct rec st;

struct rec *r = &st;

cﬁwausi
aﬁﬁwl.kocl

o\ &w\ﬁ&(_
AN A

{

}

long* addr of 1i(struct rec *r)
_©OdL

R EAIA

return & (r->1)

Qo

$rdi

(9@/‘“}),%rax

\ # r 1n

ret

™) S o Cields

C—

struct rec** addr of next (struct rec *r)

{

}

—

;//(+)}*

return & (r—->next)

S

$rdi

24(9,%85) , srax

r 1in
\enk

ret

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Generating Pointer to Array Element

struct rec {
int al4]; r r+4*index
long i; l
struct rec *next; M

b
struct rec st; 16 24 32
struct rec *r = &st;

o Generating POinter to int* find addr of array elem

Array Element (struct rec *r, long index)
{

= Offset of each structure return s&r->a[index];

member determined at) \3l

compile time & (r->a[index])

" Compute as:
P # r 1n %rdi, index 1in %rsi

r+4*in&ci&ei< \,\»K““M leaq (%rdi,%rsi,4), %rax
(ealy (¥ gkseh o L HT ret € + idewy

Mxt. V4 D\.

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Review: Memory Alignment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types: 5
a\XL“’a’

I S I S o

char No restrictions

short Lowest bit must be zero: ...0,
lbues'\' ﬂog'z(\()

int, float Lowest 2 bits zero: ...00, Lite el be O

long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

“hmhliple of ' MEGns ho remainder Lhen o hiide l)\/
S"f\LC \K lS n Pb\uet O’F Z d\\\l\Aw\j Ey]< [etlu va (’V\)r +b >> ,Qo—%Z(K)

Mo remainder Mean) Nno ucy\"' 15 '.)Sr O\uv\r_g the o‘l,\r(% — o\\\ ZevoJ In '0\.&3’\ %WOQ bfb

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data
= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries

- Virtual memory trickier when value spans 2 pages (more on this later)

®= Though x86-64 hardware will work regardless of alignment of
data

Structures & Alignment

+» Unaligned Data

C

1[0]

1[1]

S —

p ptl

+ Aligned Data
= Primitive data type requires K bytes

p+9

= Address must be multiple of K

pt+17

struct S1 {
char c;
int i[2];
double v;

} i

struct S1 st;

struct S1 *p

&St

C 1[0] 1[1] v
p+0 04 p+8 p+16 p+24
Multiple of~4\ Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

17

Structures & Alignment: Fragmentation

+» Fragmentation occurs when there are
unused portions of a struct

+ Internal Fragmentation struct S1 {
char c;
= Unused portion(s) occur between fields int i[2];
double v;
c i[0] | i[1] v b
p+0 P4 p+8 T~ p+l6 p+24
+» External Fragmentation struct S2 {
= . double v;
Unused portion at the end of the struct int i[2];
char c;
v i[0] | i[1] |c };

p+0 p+8 p+12 p+16 pt+24 18

Satisfying Alignment with Structures (1)

k |struct S1 {

+ Within structure: || char c;
= Must satisfy each element’s alignment requiremen‘/g A 20
double v;
+ Qverall structure placement }

struct S1 st;

= Each structure has alignment requirement K,y,,x
struct S1 *p = &st;

- Kinhax = Largest alignment of any element

- Counts array elements individually as elements

+~ Example:
" Kmax =8, due to double element

C 1[0] 1[1] \Y,
p+0 P4 p+8 p+16 p+24
Multiple on Multiple of 8

Multiple of 8 internal fragmentation 1

Satisfying Alignment with Structures (2)

k; struct S2 {

Can find offset of individual fields

using offsetof ()
" Needto #include <stddef.h>
" e.g.offsetof (struct S2,c) returns 16

« For largest alignment requirement Ky 5%,
overall structure size must be multiple of Kiyax =3

= Compiler will add padding at end of
structure to meet overall structure

alignment requirement

y
eax’ G

\

double v;
int i[2];
char c;

g
struct S2 st;

struct S2 *p = &st;

AV

1[0]

1[1] C

p+0

Multiple of 8

p+8

etk £

pP+16
M‘V\l" 9""1

external fragmentation

pt24

Multiple of 8
20

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Arrays of Structures

struct S2 {
. . double v;
+ Overall structure size multiple of K,,,;, int i[2];

char c;

+ Satisfy alignment requirement };
for every element in array struct S2 a[l0];

al[0] all]

external fragmentation

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Alignment of Structs

+» Compiler will do the following:

" Maintains declared ordering of fields in struct
= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= Qverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

How the Programmer Can Save Space

«» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring

¢ -4l

large data types first
~eore. 26 € Aot

struct S4 {

[char c;
“4int i;

| char d;

};

struct S4 st;

5+ +4

—)

c,nl'L

1 d

) |
/ 12 bytes

struct S5 {
int 1; Y
char c; |
char d; !/

Y

struct S5 st;

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Vote on sizeof (struct old):

Polling Question [Structs] http://pollev.com/pbjones

inimize the size of the struct by re-ordering the vars

struct old { F,struct new {
' ' '*‘ int i;

short s[3]; U\ 'P[ood— ‘C
char *c; ‘ 2 Cler 9 , &_‘:\\Me
float f£; /L &\ £—5] (4 terro-|

I }s g,-rw‘

» What are the old and new sizes of the struct?
sizeof (struct old) = 2'2_ sizeof (struct new) = 2—LJ

22 bytes A L\'Jm SU\S&]/777/F = Té ".’//A

t /- (=] |50 |5(2)

32 bytes
We’re lost...

A
B
C. 28 bytes e - —
D
E

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Aside: More Struct Definitions

« Can combine struct and instance definitions:

struct name { struct name {
/* fields */ /* fields */
}; j BE, ¥R = &8ES

struct name st;
struct name *p = &st;

T These parts do the same thing

+ Defines a struct type (struct name), an instance of
that type (st), and a pointer to that type (p)

+ This syntax is difficult to read

= Porter doesn’t like it in most situations because it conflates a type
definition with an instance definition. But that’s just his opinion...

= We are showing it because you may see it in code in the future
(and on the homework ©)

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Aside: Typedef in C

+~ A way to create an alias for another data type:
typedef <data type> <alias>;

= After typedef, the alias can be used interchangeably with
the original data type z[““:)\\ "’jj\g}j;’& 3

" e.g. typedef unsigned long int uli; umd leng
+ Joint struct definition and typedef

= Don’t need to give struct a name in this case
" typedef alone doesn’t create an instance of the struct!

struct nm { typedef struct { +j
/* fields */ /* fields */
I

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Summary

«» Arraysin C
= Aligned to satisfy every element’s alignment requirement
«» Structures

= Allocate bytes for fields in order declared by programmer

= Pad in middle to satisfy individual element alignment
requirements

= Pad at end to satisfy overall struct alignment requirement

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

. This is extra
Data Structures in Assembly (non-testable)

material

< Arrays

" One-dimensional
® Multi-dimensional (nested)
" Multi-level
+» Structs
= Alignment

<« Unions

W UNIVERSITY of WASHINGTON

Unions

+» Only allocates enough space for the largest e

in union

+» Can only use one member at a time

L14: Structs & Alignment

CSE351, Summer 2020

(" This is extra
(non-testable)

9 material

struct S {
char c;
int i[(2];
double v;

} s, *sp =

&Sy

union U {
char c;
int i[(2];
double v;

} u, *up = &u;

ement

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Accessing Array Elements

Compute start of array element as: 12*index [struct S3 {
short i;
" sizeof (S3) = 12,including alignment padding float v;

Element j is at offset 8 within structure

Assembler gives offset a+8

o o o allindex]

a+l2*index

i
a+l2*index

A

a+l2*index+8

short get j(int index) # %rdi = index
{ leaqg (%rdi,%rdi,2),%rax # 3*index
return al[index].j; movzwl a+8 (, %rax, 4), %eax

W UNIVERSITY of WASHINGTON

Roadmap

C:

L14: Structs & Alignment

Java:

CSE351, Summer 2020

Memory & data

car *c =
c—->miles

free(c);

malloc (sizeof (car)) ;
100;
c->gals = 17;

float mpg

get_mpg(c) ;

Car ¢ = new Car ()
c.setMiles (100);
c.setGals (17);
float mpg =

c.getMPG() ;

Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs

—

—

Assembly
language:

Machine
code:

get mpg:
pushqg
movq

srbp

rsp, S%Srbp

srbp
|

Popq
ret

A 4

Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Windows 10

\/
/\ A

. OS X Yosemite \A/

Computer
system:

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Assembly Programmer’s View

CPU /I kig\'\ef v
genersl purpose resicters Addresses

PYOSV(N/V\ o \

Data

condttn| |CE|ZE

co des i Instructions .
SFIOF| s Dynamic Data

(Heap)

+ Programmer-visible state Static Data

. Steic
= PC: the Program Counter ($rip in x86-64) Literals ; $izing

~ H00- — -
- Address of next instruction ° oIonstructions ’

= Named registers L buer aabr
- Together in “register file” Memory
Heavily used program data = Byte-addressable array

" Condition codes ® Code and user data

- Store status information about most recent * Includes the Stack (for
arithmetic operation

supporting procedures)
Used for conditional branching

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

size speciliers b L, 9
G GolaL) g‘\o\ﬁu

X86-64 Instructions

Data movement

" mov, movs, movZ, ... o0 L T

Req

« Arithmetic Mem

" add, sub, shl, sar, lea, ,
Labels ave addresses

Control flow

" cmp, test, J*, set¥,

Stack/procedures
" push, pop, call, ret,

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Turning C into Object Code

+ Codeinfilespl.c p2.c
Compile with command: gcc -Og pl.c p2.c -0 p

= Use basic optimizations (-0g)
= Put resulting machine code in file p

C program (p1. 2.
© daﬁa“f’ypes (text pros pl.c p2.c)
N

® 1abels Compiler (gcc -0g -9)

v

text Asm program (pl.s p2.s)

® michine 0de (5
lenbels 9o in +ables Synbiol /e locockion A

ssembler (gcc -c oras
® hemorY sativas ((d&Jl?A/'fex‘}’) ! (g)
binary | Object program (p1.0 pZ.o) Static libraries (. a)

firalize addveyes _
(e.)blve Vé‘Fe(ehCCS N i Llnker (gCC or V

binary Executable program (p)

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

Assembling

Executable has addresses (mo moe labes)

[00000000004004£6 <pcount r>:
4004f6: b8 00 00 00 00 $0x0, seax
4004fb: 48 85 ff srdi, srdi
4004fe: 74 13] 400513 <pcount r+0x1d>
400500: 53 Srbx
400501: 48 89 fb srdi, Srbx

400507: e8 ea ff ff ff callqg ~4004£6 <pcount r>
40050c: 83 e3 01 and $0x1, $ebx

40050f: 48 01 d8 add srbx, srax

labse | 400512: 5b pop $rbx
Oﬁ“:”'lfﬁ}f_a49£513‘ £3 C rep ret

Q
7))
w
g 400504: 48 dl ef srdi
(=2
®
q
I

utge& "\> Le

L Pcm‘\'_(+0x\& = 30 \:)Yh:; Frer stavy sF P(NV:\:V'
gcc —g pcount.c —o pcount

" objdump —-d pcount

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Summer 2020

A Picture of Memory (64-bit view)

OOOOOOOOOO4004f6 <pcount r>:
4004£6: (b8 00 00 00 00y mov $0x0, $eax
4004fb:C§§§ 85 ff test $rdi, $rdi
4004fe: 74 13 je 400513 <pcount r+0xld>
400500: 53 push srbx
400501: 48 89 fb mov $rdi, srbx
400504: 48 dl ef shr Srdi
400507: e8 ea ff ff ff callg 4004f6 <pcount r>
40050c: 83 e3 01 and $S0x1, $ebx
40050f: 48 01 d8 add rbx, $rax
400512: 5b pop srbx
\3295135 \ rep ret

\Z N

in&mdmw stored |f->\/—l'95
6:)d resses

018 119 2la 3lb 4]c

0x4004£0
unalign ed, buf ~ 0x4004£8

more (ompacl” 0x400500

0x400508
0x400510

W UNIVERSITY of WASHINGTON

L14: Structs & Alignment

CSE351, Summer 2020

i[0]

i[1]

i[2]

S

fp+4

multiple of 8

L multiple of 4
internal fragmentation

fp+16
multiple of 8 -1

fp+24 4
multiple of 2 -1 fpt26

external fragmentation

multiple of 8

