
CSE351, Summer 2020L07: x86-64 Programming I

x86-64 Programming I
CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:

Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

http://www.smbc-comics.com/?id=2999

http://www.smbc-comics.com/?id=2999

CSE351, Summer 2020L07: x86-64 Programming I

Administrivia

❖ Questions doc: https://tinyurl.com/CSE351-7-8

❖ hw6 & hw7 due Friday (7/10) – 10:30am

❖ hw8 due Monday (7/13) – 10:30am

❖ Lab 1b due Friday at 11:59pm (7/10)
▪ Submit aisle_manager.c, store_client.c, and
lab1Breflect.txt

2

https://tinyurl.com/CSE351-7-8

CSE351, Summer 2020L07: x86-64 Programming I

Administrivia

❖ Unit Summary 1 Due Wednesday 7/15

▪ Submitted via Gradescope

❖ Unit Summaries are meant to encourage
review/reflection of material in place of exams

▪ See course website for specification and instructions,
including small examples

❖ Grading very lenient and forgiving, mostly based on
effort! If you put in a solid effort you will likely get full
credit

3

CSE351, Summer 2020L07: x86-64 Programming I

Floating point topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
4

CSE351, Summer 2020L07: x86-64 Programming I

Floating Point in C

❖ Two common levels of precision:
float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

❖ #include <math.h> to get INFINITY and NAN
constants

❖ Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

5

!!!

CSE351, Summer 2020L07: x86-64 Programming I

Floating Point Conversions in C

❖ Casting between int, float, and double changes
the bit representation
▪ int → float

• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

▪ int or float → double

• Exact conversion (all 32-bit ints representable)

▪ long → double

• Depends on word size (32-bit is exact, 64-bit may be rounded)

▪ double or float → int

• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

6

!!!

CSE351, Summer 2020L07: x86-64 Programming I

Floating Point and the Programmer

7

#include <stdio.h>

int main(int argc, char* argv[]) {

float f1 = 1.0;

float f2 = 0.0;

int i;

for (i = 0; i < 10; i++)

f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);

printf("f1 = %10.9f\n", f1);

printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;

f2 = 1E-30;

float f3 = f1 + f2;

printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;

}

$./a.out

0x3f800000 0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes

CSE351, Summer 2020L07: x86-64 Programming I

Floating Point Summary

❖ Floats also suffer from the fixed number of bits
available to represent them
▪ Can get overflow/underflow

▪ “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or
distributive
▪ Mathematically equivalent ways of writing an expression

may compute different results

❖ Never test floating point values for equality!

❖ Careful when converting between ints and floats!
8

CSE351, Summer 2020L07: x86-64 Programming I

Number Representation Really Matters

❖ 1991: Patriot missile targeting error
▪ clock skew due to conversion from integer to floating point

❖ 1996: Ariane 5 rocket exploded ($1 billion)
▪ overflow converting 64-bit floating point to 16-bit integer

❖ 2000: Y2K problem
▪ limited (decimal) representation: overflow, wrap-around

❖ 2038: Unix epoch rollover
▪ Unix epoch = seconds since 12am, January 1, 1970

▪ signed 32-bit integer representation rolls over to TMin in 2038

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 10% error in less than 2 years

▪ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

▪ 1997: USS Yorktown “smart” warship stranded: divide by zero

▪ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
9

CSE351, Summer 2020L07: x86-64 Programming I

Summary

❖ Floating point approximates real numbers:

▪ Handles large numbers, small numbers, special numbers

▪ Exponent in biased notation (bias = 2w-1–1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

▪ Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision

• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

10

S E (8) M (23)
31 30 23 22 0

CSE351, Summer 2020L07: x86-64 Programming I

Summary

❖ Floating point encoding has many limitations

▪ Overflow, underflow, rounding

▪ Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

▪ Floating point arithmetic is NOT associative or distributive

❖ Converting between integral and floating point data
types does change the bits

11

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Summer 2020L07: x86-64 Programming I

Roadmap

12

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2020L07: x86-64 Programming I

C Language

Architecture Sits at the Hardware Interface

13

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Summer 2020L07: x86-64 Programming I

Definitions

❖ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

▪ “What is directly visible to software”

❖ Microarchitecture: Implementation of the
architecture

▪ CSE/EE 469

14

CSE351, Summer 2020L07: x86-64 Programming I

Instruction Set Architectures

❖ The ISA defines:

▪ The system’s state (e.g. registers, memory, program
counter)

▪ The instructions the CPU can execute

▪ The effect that each of these instructions will have on the
system state

15

CPU

MemoryPC

Registers

CSE351, Summer 2020L07: x86-64 Programming I

Instruction Set Philosophies

❖ Complex Instruction Set Computing (CISC): Add more
and more elaborate and specialized instructions as
needed

▪ Lots of tools for programmers to use, but hardware must be
able to handle all instructions

▪ x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

❖ Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular

▪ Easier to build fast hardware

▪ Let software do the complicated operations by composing
simpler ones

16

CSE351, Summer 2020L07: x86-64 Programming I

General ISA Design Decisions

❖ Instructions

▪ What instructions are available? What do they do?

▪ How are they encoded?

❖ Registers

▪ How many registers are there?

▪ How wide are they?

❖ Memory

▪ How do you specify a memory location?

17

CSE351, Summer 2020L07: x86-64 Programming I

Mainstream ISAs

18

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

CSE351, Summer 2020L07: x86-64 Programming I

Writing Assembly Code? In 2020???

❖ Chances are, you’ll never write a program in
assembly, but understanding assembly is the key to
the machine-level execution model:

▪ Behavior of programs in the presence of bugs
• When high-level language model breaks down

▪ Tuning program performance
• Understand optimizations done/not done by the compiler

• Understanding sources of program inefficiency

▪ Implementing systems software
• What are the “states” of processes that the OS must manage

• Using special units (timers, I/O co-processors, etc.) inside processor!

▪ Fighting malicious software
• Distributed software is in binary form

19

CSE351, Summer 2020L07: x86-64 Programming I

CPU

Assembly Programmer’s View

❖ Programmer-visible state
▪ PC: the Program Counter (%rip in x86-64)

• Address of next instruction

▪ Named registers

• Together in “register file”

• Heavily used program data

▪ Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching 20

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

❖ Memory
▪ Byte-addressable array

▪ Code and user data

▪ Includes the Stack (for
supporting procedures)

CSE351, Summer 2020L07: x86-64 Programming I

x86-64 Assembly “Data Types”

❖ Integral data of 1, 2, 4, or 8 bytes
▪ Data values

▪ Addresses

❖ Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
▪ Different registers for those (e.g. %xmm1, %ymm2)

▪ Come from extensions to x86 (SSE, AVX, …)

❖ No aggregate types such as arrays or structures
▪ Just contiguously allocated bytes in memory

❖ Two common syntaxes
▪ “AT&T”: used by our course, slides, textbook, gnu tools, …

▪ “Intel”: used by Intel documentation, Intel tools, …

▪ Must know which you’re reading

21

Not covered
In 351

CSE351, Summer 2020L07: x86-64 Programming I

What is a Register?

❖ A location in the CPU that stores a small amount of
data, which can be accessed very quickly (once every
clock cycle)

❖ Registers have names, not addresses
▪ In assembly, they start with % (e.g. %rsi)

❖ Registers are at the heart of assembly programming

▪ They are a precious commodity in all architectures, but
especially x86

22

CSE351, Summer 2020L07: x86-64 Programming I

x86-64 Integer Registers – 64 bits wide

▪ Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

23

%r8d%r8

%r9d%r9

%r10d%r10

%r11d%r11

%r12d%r12

%r13d%r13

%r14d%r14

%r15d%r15

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

CSE351, Summer 2020L07: x86-64 Programming I

Some History: IA32 Registers – 32 bits wide

24

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE351, Summer 2020L07: x86-64 Programming I

Memory vs. Registers

❖ Addresses vs. Names
▪ 0x7FFFD024C3DC %rdi

❖ Big vs. Small

▪ ~ 8 GiB (16 x 8 B) = 128 B

❖ Slow vs. Fast

▪ ~50-100 ns sub-nanosecond timescale

❖ Dynamic vs. Static

▪ Can “grow” as needed fixed number in hardware
while program runs

25

CSE351, Summer 2020L07: x86-64 Programming I

Three Basic Kinds of Instructions

1) Transfer data between memory and register

▪ Load data from memory into register
• %reg = Mem[address]

▪ Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or memory
data
▪ c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next

▪ Unconditional jumps to/from procedures

▪ Conditional branches
26

Remember: Memory
is indexed just like an
array of bytes!

CSE351, Summer 2020L07: x86-64 Programming I

Operand types

❖ Immediate: Constant integer data
▪ Examples: $0x400, $-533

▪ Like C literal, but prefixed with ‘$’

▪ Encoded with 1, 2, 4, or 8 bytes
depending on the instruction

❖ Register: 1 of 16 integer registers
▪ Examples: %rax, %r13

▪ But %rsp reserved for special use

▪ Others have special uses for particular
instructions

❖ Memory: Consecutive bytes of memory
at a computed address
▪ Simplest example: (%rax)

▪ Various other “address modes”
27

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

CSE351, Summer 2020L07: x86-64 Programming I

x86-64 Introduction

❖ Data transfer instruction (mov)

❖ Arithmetic operations

❖ Memory addressing modes
▪ swap example

❖ Address computation instruction (lea)

28

CSE351, Summer 2020L07: x86-64 Programming I

Moving Data

❖ General form: mov_ source, destination

▪ Missing letter (_) specifies size of operands

▪ Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
in x86 instruction names

▪ Lots of these in typical code

❖ movb src, dst

▪ Move 1-byte “byte”

❖ movw src, dst

▪ Move 2-byte “word”

29

❖ movl src, dst

▪ Move 4-byte “long word”

❖ movq src, dst

▪ Move 8-byte “quad word”

CSE351, Summer 2020L07: x86-64 Programming I

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

30

❖ Cannot do memory-memory transfer with a single
instruction

▪ How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

CSE351, Summer 2020L07: x86-64 Programming I

Some Arithmetic Operations

❖ Binary (two-operand) Instructions:

▪

▪ Beware argument
order!

▪ No distinction
between signed
and unsigned
• Only arithmetic vs.

logical shifts

▪ How do you
implement
“r3 = r1 + r2”?

31

Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src

Maximum of one
memory operand

operand size specifier

CSE351, Summer 2020L07: x86-64 Programming I

Polling Question [Asm I – a]

❖ Assume: r3 is in %rcx, r1 is in %rax, and r2 is in %rbx
which of the following would implement:

r3 = r1 + r2

▪ Vote at http://pollev.com/pbjones

A. addq %rax, %rbx, %rcx

B. addq %rcx, %rax, %rbx

C. movq %rax, %rcx

addq %rbx, %rcx

D. movq (%rbx), %rcx

addq (%rax), %rcx

E. We’re lost…
32

http://pollev.com/pbjones

CSE351, Summer 2020L07: x86-64 Programming I

Some Arithmetic Operations

❖ Unary (one-operand) Instructions:

❖ See CSPP Section 3.5.5 for more instructions:
mulq, cqto, idivq, divq

33

Format Computation

incq dst dst = dst + 1 increment

decq dst dst = dst – 1 decrement

negq dst dst = –dst negate

notq dst dst = ~dst bitwise complement

CSE351, Summer 2020L07: x86-64 Programming I

Arithmetic Example

34

long simple_arith(long x, long y)

{

long t1 = x + y;

long t2 = t1 * 3;

return t2;

}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

y += x;

y *= 3;

long r = y;

return r;

simple_arith:

addq %rdi, %rsi

imulq $3, %rsi

movq %rsi, %rax

ret

CSE351, Summer 2020L07: x86-64 Programming I

Example of Basic Addressing Modes

35

void swap(long *xp, long *yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding swap()

36

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable

%rdi ⇔ xp

%rsi ⇔ yp

%rax ⇔ t0

%rdx ⇔ t1

void swap(long *xp, long *yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding swap()

37

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding swap()

38

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding swap()

39

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding swap()

40

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

456

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding swap()

41

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

123

456

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

CSE351, Summer 2020L07: x86-64 Programming I

Memory Addressing Modes: Basic

❖ Indirect: (R) Mem[Reg[R]]

▪ Data in register R specifies the memory address

▪ Like pointer dereference in C

▪ Example: movq (%rcx), %rax

❖ Displacement: D(R) Mem[Reg[R]+D]

▪ Data in register R specifies the start of some memory region

▪ Constant displacement D specifies the offset from that
address

▪ Example: movq 8(%rbp), %rdx

42

CSE351, Summer 2020L07: x86-64 Programming I

Complete Memory Addressing Modes

❖ General:
▪ D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]

• Rb: Base register (any register)

• Ri: Index register (any register except %rsp)

• S: Scale factor (1, 2, 4, 8) – why these numbers?

• D: Constant displacement value (a.k.a. immediate)

❖ Special cases (see CSPP Figure 3.3 on p.181)
▪ D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (S=1)

▪ (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S] (D=0)

▪ (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] (S=1,D=0)

▪ (,Ri,S) Mem[Reg[Ri]*S] (Rb=0,D=0)

43

CSE351, Summer 2020L07: x86-64 Programming I

Address Computation Examples

44

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

CSE351, Summer 2020L07: x86-64 Programming I

Summary

❖ x86-64 is a complex instruction set computing (CISC)
architecture

▪ There are 3 types of operands in x86-64
• Immediate, Register, Memory

▪ There are 3 types of instructions in x86-64
• Data transfer, Arithmetic, Control Flow

❖ Memory Addressing Modes: The addresses used for
accessing memory in mov (and other) instructions can
be computed in several different ways

▪ Base register, index register, scale factor, and displacement
map well to pointer arithmetic operations

45

