
CSE351, Summer 2020L07: x86-64 Programming I

x86-64	Programming	I
CSE	351	Summer	2020
Instructor:
Porter	Jones

Teaching	Assistants:
Amy	Xu
Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

http://www.smbc-comics.com/?id=2999

CSE351, Summer 2020L07: x86-64 Programming I

Administrivia

v Accommodations/Extenuating	Circumstances
§ These are unfortunate and difficult times for	many	people	
for	a number of reasons

§ Please contact us if you	have	unforeseen	difficulties	that	
may	affect	your	ability	to	turn	in	assignments/stay	on	track
• The earlier you contact us the better!	(i.e.	before	an	assignment	is	
due,	right	when	a	deadline	is	missed,	etc.)

• See course syllabus for more information

§ It	should	go	without	saying	there	are	more	important	things	
than	CSE	351,	we	want	to	work	with	you	to	find	the	balance	
that	works	best	for	you	given	these	difficult	times

2

CSE351, Summer 2020L07: x86-64 Programming I

Administrivia

v Questions	doc:	https://tinyurl.com/CSE351-7-8

v hw6	&	hw7	due	Friday	(7/10)	– 10:30am
v hw8	due	Monday	(7/13)	– 10:30am

v Lab	1b	due	Friday	at	11:59pm	(7/10)
§ Submit	aisle_manager.c,	store_client.c,	and	
lab1Breflect.txt

3

CSE351, Summer 2020L07: x86-64 Programming I

Administrivia

v Unit	Summary	1	Due	Wednesday	7/15
§ Submitted	via	Gradescope

v Unit	Summaries	are	meant	to	encourage	
review/reflection	of	material	in	place	of	exams
§ See	course	website	for	specification	and	instructions,	
including	small	examples

v Grading	very	lenient	and	forgiving,	mostly	based	on	
effort!	If	you	put	in	a	solid	effort	you	will	likely	get	full	
credit

4

CSE351, Summer 2020L07: x86-64 Programming I

Floating	point	topics

v Fractional	binary	numbers
v IEEE	floating-point	standard
v Floating-point	operations	and	rounding
v Floating-point	in	C

v There	are	many	more	details	that	we	won’t	cover
§ It’s	a	58-page	standard…

5

CSE351, Summer 2020L07: x86-64 Programming I

Floating	Point	in	C

v Two	common	levels	of	precision:
float 1.0f single	precision	(32-bit)
double 1.0 double	precision	(64-bit)

v #include <math.h> to	get	INFINITY and	NAN
constants

v Equality	(==)	comparisons	between	floating	point	
numbers	are	tricky,	and	often	return	unexpected	
results,	so	just	avoid	them!

6

!!!

CSE351, Summer 2020L07: x86-64 Programming I

Floating	Point	Conversions	in	C

v Casting	between	int,	float,	and	double changes
the	bit	representation
§ int → float

• May	be	rounded	(not	enough	bits	in	mantissa:	23)
• Overflow	impossible

§ int or	float → double
• Exact	conversion	(all	32-bit	ints representable)

§ long → double
• Depends	on	word	size	(32-bit	is	exact,	64-bit	may	be	rounded)

§ double or	float → int
• Truncates	fractional	part	(rounded	toward	zero)
• “Not	defined”	when	out	of	range	or	NaN:		generally	sets	to	Tmin
(even	if	the	value	is	a	very	big	positive)

7

!!!

CSE351, Summer 2020L07: x86-64 Programming I

Floating	Point	and	the	Programmer

8

#include <stdio.h>

int main(int argc, char* argv[]) {
float f1 = 1.0;
float f2 = 0.0;
int i;
for (i = 0; i < 10; i++)
f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf("f1 = %10.9f\n", f1);
printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes

CSE351, Summer 2020L07: x86-64 Programming I

Floating	Point	Summary

v Floats	also	suffer	from	the	fixed	number	of	bits	
available	to	represent	them	
§ Can	get	overflow/underflow
§ “Gaps”	produced	in	representable	numbers	means	we	can	
lose	precision,	unlike	ints
• Some	“simple	fractions”	have	no	exact	representation	(e.g. 0.2)
• “Every	operation	gets	a	slightly	wrong	result”

v Floating	point	arithmetic	not	associative	or	
distributive
§ Mathematically	equivalent	ways	of	writing	an	expression	
may	compute	different	results

v Never test	floating	point	values	for	equality!
v Careful	when	converting	between	ints and	floats!

9

CSE351, Summer 2020L07: x86-64 Programming I

Number	Representation	Really	Matters
v 1991: Patriot	missile	targeting	error

§ clock	skew	due	to	conversion	from	integer	to	floating	point

v 1996: Ariane 5	rocket	exploded		($1	billion)
§ overflow	converting	64-bit	floating	point	to	16-bit	integer

v 2000: Y2K	problem
§ limited	(decimal)	representation:	overflow,	wrap-around

v 2038: Unix	epoch	rollover
§ Unix	epoch	=	seconds	since	12am,	January	1,	1970
§ signed	32-bit	integer	representation	rolls	over	to	TMin in	2038

v Other	related	bugs:
§ 1982:	Vancouver	Stock	Exchange	10%	error	in	less	than	2	years
§ 1994:	Intel	Pentium	FDIV	(floating	point	division)	HW	bug	($475	million)
§ 1997:	USS	Yorktown	“smart”	warship	stranded:	divide	by	zero
§ 1998:	Mars	Climate	Orbiter	crashed:	unit	mismatch	($193	million)

10

CSE351, Summer 2020L07: x86-64 Programming I

Summary

v Floating	point	approximates	real	numbers:

§ Handles	large	numbers,	small	numbers,	special	numbers
§ Exponent	in	biased	notation	(bias	=	2w-1–1)

• Size	of	exponent	field	determines	our	representable	range
• Outside	of	representable	exponents	is	overflow and	underflow

§ Mantissa	approximates	fractional	portion	of	binary	point
• Size	of	mantissa	field	determines	our	representable	precision
• Implicit	leading	1	(normalized)	except	in	special	cases
• Exceeding	length	causes	rounding

11

S E	(8) M	(23)
31	30 23	22 0

CSE351, Summer 2020L07: x86-64 Programming I

Summary

v Floating	point	encoding	has	many	limitations
§ Overflow,	underflow,	rounding
§ Rounding	is	a	HUGE	issue	due	to	limited	mantissa	bits	and	
gaps	that	are	scaled	by	the	value	of	the	exponent

§ Floating	point	arithmetic	is	NOT	associative	or	distributive

v Converting	between	integral	and	floating	point	data	
types	does change	the	bits	

12

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm	num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Summer 2020L07: x86-64 Programming I

Roadmap

13

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L07: x86-64 Programming I

C	Language

Architecture	Sits	at	the	Hardware	Interface

14

x86-64

Intel	Pentium 4

Intel	Core	2

Intel Core	i7

AMD	Opteron

AMD	Athlon

GCC

ARMv8
(AArch64/A64)

ARM	Cortex-A53

Apple	A7

Clang

Your	
program

Program	
B

Program	
A

CompilerSource	code Architecture
Different	applications
or	algorithms

Perform	optimizations,
generate	instructions

Different	
implementations

Hardware
Instruction	set

CSE351, Summer 2020L07: x86-64 Programming I

Definitions

v Architecture	(ISA): The	parts	of	a	processor	design	
that	one	needs	to	understand	to	write	assembly	code
§ “What	is	directly	visible	to	software”

v Microarchitecture: Implementation	of	the	
architecture
§ CSE/EE	469

15

CSE351, Summer 2020L07: x86-64 Programming I

Instruction	Set	Architectures

v The	ISA	defines:
§ The	system’s	state (e.g. registers,	memory,	program	
counter)

§ The	instructions the	CPU	can	execute
§ The	effect that	each	of	these	instructions	will	have	on	the	
system	state

16

CPU

MemoryPC

Registers

CSE351, Summer 2020L07: x86-64 Programming I

Instruction	Set	Philosophies

v Complex	Instruction	Set	Computing (CISC):		Add	more	
and	more	elaborate	and	specialized	instructions	as	
needed	
§ Lots	of	tools	for	programmers	to	use,	but	hardware	must	be	
able	to	handle	all	instructions

§ x86-64	is	CISC,	but	only	a	small	subset	of	instructions	
encountered	with	Linux	programs

v Reduced	Instruction	Set	Computing	(RISC):		Keep	
instruction	set	small	and	regular
§ Easier	to	build	fast	hardware
§ Let	software	do	the	complicated	operations	by	composing	
simpler	ones

17

CSE351, Summer 2020L07: x86-64 Programming I

General	ISA	Design	Decisions

v Instructions
§ What	instructions	are	available?	What	do	they	do?
§ How	are	they	encoded?

v Registers
§ How	many	registers	are	there?
§ How	wide	are	they?

v Memory
§ How	do	you	specify	a	memory	location?

18

CSE351, Summer 2020L07: x86-64 Programming I

Mainstream	ISAs

19

Macbooks &	PCs
(Core	i3,	i5,	i7,	M)
x86-64	Instruction	Set

Smartphone-like	devices
(iPhone,	iPad,	Raspberry	Pi)
ARM	Instruction	Set

Digital	home	&	networking	
equipment
(Blu-ray,	PlayStation	2)
MIPS	Instruction	Set

CSE351, Summer 2020L07: x86-64 Programming I

Writing	Assembly	Code?		In	2020???

v Chances	are,	you’ll	never	write	a	program	in	
assembly,	but	understanding	assembly	is	the	key	to	
the	machine-level	execution	model:
§ Behavior	of	programs	in	the	presence	of	bugs

• When	high-level	language	model	breaks	down

§ Tuning	program	performance
• Understand	optimizations	done/not	done	by	the	compiler
• Understanding	sources	of	program	inefficiency

§ Implementing	systems	software
• What	are	the	“states”	of	processes	that	the	OS	must	manage
• Using	special	units	(timers,	I/O	co-processors,	etc.)	inside	processor!

§ Fighting	malicious	software
• Distributed	software	is	in	binary	form

20

CSE351, Summer 2020L07: x86-64 Programming I

CPU

Assembly	Programmer’s	View

v Programmer-visible	state
§ PC:		the	Program	Counter	(%rip in	x86-64)

• Address	of	next	instruction
§ Named	registers

• Together	in	“register	file”
• Heavily	used	program	data

§ Condition	codes
• Store	status	information	about	most	recent	
arithmetic	operation

• Used	for	conditional	branching 21

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

v Memory
§ Byte-addressable	array
§ Code	and	user	data
§ Includes	the	Stack	(for	

supporting	procedures)

CSE351, Summer 2020L07: x86-64 Programming I

x86-64	Assembly	“Data	Types”
v Integral	data	of	1,	2,	4,	or	8	bytes

§ Data	values
§ Addresses

v Floating	point	data	of	4,	8,	10	or	2x8	or	4x4	or	8x2
§ Different	registers	for	those	(e.g. %xmm1,	%ymm2)
§ Come	from	extensions	to	x86	(SSE,	AVX,	…)

v No	aggregate	types	such	as	arrays	or	structures
§ Just	contiguously	allocated	bytes	in	memory

v Two	common	syntaxes
§ “AT&T”:	used	by	our	course,	slides,	textbook,	gnu	tools,	…
§ “Intel”:	used	by	Intel	documentation,	Intel	tools,	…
§ Must	know	which	you’re	reading

22

Not	covered
In	351

CSE351, Summer 2020L07: x86-64 Programming I

What	is	a	Register?

v A	location	in	the	CPU	that	stores	a	small	amount	of	
data,	which	can	be	accessed	very	quickly (once	every	
clock	cycle)

v Registers	have	names,	not	addresses
§ In	assembly,	they	start	with	% (e.g. %rsi)

v Registers	are	at	the	heart	of	assembly	programming
§ They	are	a	precious	commodity	in	all	architectures,	but	
especially x86

23

CSE351, Summer 2020L07: x86-64 Programming I

x86-64	Integer	Registers	– 64	bits	wide

§ Can	reference	low-order	4	bytes	(also	low-order	2	&	1	bytes)

24

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

CSE351, Summer 2020L07: x86-64 Programming I

Some	History:	IA32	Registers	– 32	bits	wide

25

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit	virtual	registers
(backwards	compatibility)

ge
ne

ra
l	p
ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name	Origin
(mostly	obsolete)

CSE351, Summer 2020L07: x86-64 Programming I

Memory	 vs. Registers

v Addresses	 vs. Names
§ 0x7FFFD024C3DC %rdi

v Big vs. Small
§ ~	8	GiB (16	x	8	B)	=	128	B

v Slow vs. Fast
§ ~50-100	ns sub-nanosecond	timescale

v Dynamic vs. Static
§ Can	“grow”	as	needed fixed	number	in	hardware

while	program	runs

26

CSE351, Summer 2020L07: x86-64 Programming I

Three	Basic	Kinds	of	Instructions

1) Transfer	data	between	memory	and	register
§ Load data	from	memory	into	register

• %reg =	Mem[address]	

§ Store register	data	into	memory
• Mem[address]	=	%reg

2) Perform	arithmetic	operation	on	register	or	memory	
data
§ c = a + b; z = x << y; i = h & g;

3) Control	flow:		what	instruction	to	execute	next
§ Unconditional	jumps	to/from	procedures
§ Conditional	branches

27

Remember: Memory	
is	indexed	just	like	an	
array	of	bytes!

CSE351, Summer 2020L07: x86-64 Programming I

Operand	types
v Immediate: Constant	integer	data

§ Examples:		$0x400,		$-533
§ Like	C	literal,	but	prefixed	with	‘$’
§ Encoded	with	1,	2,	4,	or	8	bytes	

depending	on	the	instruction

v Register: 1	of	16	integer	registers
§ Examples:		%rax,		%r13
§ But	%rsp reserved	for	special	use
§ Others	have	special	uses	for	particular	

instructions

v Memory: Consecutive	bytes	of	memory	
at	a	computed	address
§ Simplest	example:		(%rax)
§ Various	other	“address	modes”

28

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

CSE351, Summer 2020L07: x86-64 Programming I

x86-64	Introduction

v Data	transfer	instruction	(mov)
v Arithmetic	operations
v Memory	addressing	modes

§ swap example

v Address	computation	instruction	(lea)

29

CSE351, Summer 2020L07: x86-64 Programming I

Moving	Data

v General	form:		mov_ source, destination
§ Missing	letter	(_)	specifies	size	of	operands
§ Note	that	due	to	backwards-compatible	support	for	8086	
programs	(16-bit	machines!),	“word”	means	16	bits	=	2	bytes	
in	x86	instruction	names

§ Lots	of	these	in	typical	code

v movb src, dst
§ Move	1-byte	“byte”

v movw src, dst
§ Move	2-byte	“word”

30

v movl src, dst
§ Move	4-byte	“long	word”

v movq src, dst
§ Move	8-byte	“quad	word”

CSE351, Summer 2020L07: x86-64 Programming I

Operand	Combinations

Source Dest Src,	Dest C	Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

31

v Cannot	do	memory-memory	transfer	with	a	single	
instruction
§ How	would	you	do	it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

CSE351, Summer 2020L07: x86-64 Programming I

Some	Arithmetic	Operations

v Binary	(two-operand)	Instructions:
§

§ Beware	argument
order!

§ No	distinction
between	signed
and	unsigned
• Only	arithmetic	vs.
logical	shifts

§ How	do	you
implement	
“r3 = r1 + r2”?

32

Format Computation
addq src, dst dst =	dst +	src (dst +=	src)
subq src, dst dst =	dst – src

imulq src, dst dst =	dst *	src signed	mult
sarq src, dst dst =	dst >>	src Arithmetic
shrq src, dst dst =	dst >>	src Logical
shlq src, dst dst =	dst <<	src (same as salq)

xorq src, dst dst =	dst ^	src

andq src, dst dst =	dst &	src
orq src, dst dst =	dst |	src

Maximum	of	one	
memory	operand

operand	size	specifier

CSE351, Summer 2020L07: x86-64 Programming I

Polling	Question	[Asm I	– a]

v Assume:	r3	is	in	%rcx,	r1	is	in	%rax,	and	r2	is	in	%rbx
which	of	the	following	would	implement:	

r3	=	r1	+	r2
§ Vote	at	http://pollev.com/pbjones

A. addq %rax, %rbx, %rcx
B. addq %rcx, %rax, %rbx
C. movq %rax, %rcx

addq %rbx, %rcx
D. movq (%rbx), %rcx

addq (%rax), %rcx

E. We’re	lost…
33

CSE351, Summer 2020L07: x86-64 Programming I

Some	Arithmetic	Operations

v Unary	(one-operand)	Instructions:

v See	CSPP	Section	3.5.5	for	more	instructions:		
mulq,		cqto,		idivq,		divq

34

Format Computation
incq dst dst =	dst +	1 increment
decq dst dst =	dst – 1 decrement
negq dst dst =	–dst negate
notq dst dst =	~dst bitwise complement

CSE351, Summer 2020L07: x86-64 Programming I

Arithmetic	Example

35

long simple_arith(long x, long y)
{
long t1 = x + y;
long t2 = t1 * 3;
return t2;

}

Register Use(s)

%rdi 1st argument	(x)

%rsi 2nd argument	(y)

%rax return	value

y += x;
y *= 3;
long r = y;
return r;

simple_arith:
addq %rdi, %rsi
imulq $3, %rsi
movq %rsi, %rax
ret

CSE351, Summer 2020L07: x86-64 Programming I

Example	of	Basic	Addressing	Modes

36

void swap(long *xp, long *yp)
{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding		swap()

37

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable
%rdi ⇔ xp

%rsi ⇔ yp

%rax ⇔ t0

%rdx ⇔ t1

void swap(long *xp, long *yp)
{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding		swap()

38

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding		swap()

39

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers Memory

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding		swap()

40

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

123

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding		swap()

41

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

456

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2020L07: x86-64 Programming I

Understanding		swap()

42

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

123

456

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

CSE351, Summer 2020L07: x86-64 Programming I

Memory	Addressing	Modes:		Basic

v Indirect: (R) Mem[Reg[R]]
§ Data	in	register	R specifies	the	memory	address
§ Like	pointer	dereference	in	C
§ Example: movq (%rcx), %rax

v Displacement: D(R) Mem[Reg[R]+D]
§ Data	in	register	R specifies	the	start of	some	memory	region
§ Constant	displacement	D specifies	the	offset	from	that	
address

§ Example: movq 8(%rbp), %rdx

43

CSE351, Summer 2020L07: x86-64 Programming I

Complete	Memory	Addressing	Modes

v General:
§ D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]

• Rb: Base	register	(any	register)
• Ri: Index	register	(any	register	except	%rsp)
• S: Scale	factor	(1,	2,	4,	8)	– why	these	numbers?
• D: Constant	displacement	value	(a.k.a.	immediate)

v Special	cases		(see	CSPP	Figure	3.3	on	p.181)
§ D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (S=1)

§ (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S] (D=0)

§ (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] (S=1,D=0)
§ (,Ri,S) Mem[Reg[Ri]*S] (Rb=0,D=0)

44

CSE351, Summer 2020L07: x86-64 Programming I

Address	Computation	Examples

45

%rdx

%rcx

0xf000

0x0100

Expression Address	Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

CSE351, Summer 2020L07: x86-64 Programming I

Summary

v x86-64	is	a	complex	instruction	set	computing	(CISC)	
architecture
§ There	are	3	types	of	operands	in	x86-64

• Immediate,	Register,	Memory

§ There	are	3	types	of	instructions	in	x86-64
• Data	transfer,	Arithmetic,	Control	Flow

v Memory	Addressing	Modes: The	addresses	used	for	
accessing	memory	in	mov (and	other)	instructions	can	
be	computed	in	several	different	ways
§ Base	register,	index	register,	scale	factor,	and	displacement
map	well	to	pointer	arithmetic	operations

46

CSE351, Summer 2020L07: x86-64 Programming I

On	your	index	card:
v In	general,	pace	of	class	is:1	too	fast

2 kind of fast
3 just right
4 kind of slow
5 too slow

v Please	Keep doing	this:
v Please	Quit doing	this:
v Please	Start doing	this:

