
CSE351, Summer 2020L06: Floating Point II

Floating Point II
CSE 351 Summer 2020

Instructor: Teaching Assistants:

Porter Jones Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

http://xkcd.com/571/

http://xkcd.com/257/

CSE351, Summer 2020L06: Floating Point II

Administrivia

❖ Questions doc: https://tinyurl.com/CSE351-7-6

❖ hw6 & hw7 due Friday (7/10) – 10:30am

❖ Lab 1a due tonight at 11:59 pm!!!
▪ Submit pointer.c and lab1Areflect.txt

❖ Lab 1b due Friday (7/10)
▪ Submit aisle_manager.c, store_client.c and
lab1Breflect.txt

2

https://tinyurl.com/CSE351-7-6

CSE351, Summer 2020L06: Floating Point II

Fixed Point Representation

❖ Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

❖ Wherever we put the binary point, with fixed point
representations there is a trade off between the
amount of range and precision we have

❖ Fixed point = fixed range and fixed precision
▪ range: difference between largest and smallest numbers possible

▪ precision: smallest possible difference between any two numbers

❖ Hard to pick how much you need of each!
3

CSE351, Summer 2020L06: Floating Point II

Floating Point Representation

❖ Analogous to scientific notation

▪ In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7

• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

▪ In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

❖ We have to divvy up the bits we have (e.g., 32) among:

▪ the sign (1 bit)

▪ the mantissa (significand)

▪ the exponent

4

CSE351, Summer 2020L06: Floating Point II

Scientific Notation (Decimal)

❖ Normalized form: exactly one digit (non-zero) to left
of decimal point

❖ Alternatives to representing 1/1,000,000,000
▪ Normalized: 1.0×10-9

▪ Not normalized: 0.1×10-8,10.0×10-10

5

6.0210 × 1023

radix (base)decimal point

exponentmantissa

CSE351, Summer 2020L06: Floating Point II

Scientific Notation (Binary)

❖ Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

▪ Declare such variable in C as float (or double)

6

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Summer 2020L06: Floating Point II

Scientific Notation Translation

❖ Convert from scientific notation to binary point
▪ Perform the multiplication by shifting the decimal until the exponent

disappears

• Example: 1.0112×24 = 101102 = 2210

• Example: 1.0112×2-2 = 0.010112 = 0.3437510

❖ Convert from binary point to normalized scientific notation
▪ Distribute out exponents until binary point is to the right of a single digit

• Example: 1101.0012 = 1.1010012×23

❖ Practice: Convert 11.37510 to normalized binary scientific
notation

7

CSE351, Summer 2020L06: Floating Point II

Floating Point Topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
8

CSE351, Summer 2020L06: Floating Point II

IEEE Floating Point

❖ IEEE 754
▪ Established in 1985 as uniform standard for floating point arithmetic

▪ Main idea: make numerically sensitive programs portable

▪ Specifies two things: representation and result of floating operations

▪ Now supported by all major CPUs

❖ Driven by numerical concerns
▪ Scientists/numerical analysts want them to be as real as possible

▪ Engineers want them to be easy to implement and fast

▪ In the end:

• Scientists mostly won out

• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

9

CSE351, Summer 2020L06: Floating Point II

Floating Point Encoding

❖ Use normalized, base 2 scientific notation:

▪ Value: ±1 × Mantissa × 2Exponent

▪ Bit Fields: (-1)S × 1.M × 2(E–bias)

❖ Representation Scheme:

▪ Sign bit (0 is positive, 1 is negative)

▪ Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

▪ Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

10

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Summer 2020L06: Floating Point II

The Exponent Field

❖ Use biased notation

▪ Read exponent as unsigned, but with bias of 2w-1-1 = 127

▪ Representable exponents roughly ½ positive and ½ negative

▪ Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

❖ Why biased?

▪ Makes floating point arithmetic easier

▪ Makes somewhat compatible with two’s complement

❖ Practice: To encode in biased notation, add the bias then
encode in unsigned:

▪ Exp = 1 → → E = 0b

▪ Exp = 127 → → E = 0b

▪ Exp = -63 → → E = 0b
11

CSE351, Summer 2020L06: Floating Point II

The Mantissa (Fraction) Field

❖ Note the implicit 1 in front of the M bit vector

▪ Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as 1.12 = 1.510, not 0.12 = 0.510

▪ Gives us an extra bit of precision

❖ Mantissa “limits”

▪ Low values near M = 0b0…0 are close to 2Exp

▪ High values near M = 0b1…1 are close to 2Exp+1

12

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Summer 2020L06: Floating Point II

Polling Question [FP I – a]

❖ What is the correct value encoded by the following
floating point number?

▪ 0b 0 10000000 11000000000000000000000

▪ Vote at http://pollev.com/pbjones

A. + 0.75

B. + 1.5

C. + 2.75

D. + 3.5

E. We’re lost…
13

http://pollev.com/pbjones

CSE351, Summer 2020L06: Floating Point II

Normalized Floating Point Conversions

❖ FP → Decimal
1. Append the bits of M to

implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the
exponent by shifting the
binary point.

5. Convert from binary to
decimal.

14

❖ Decimal → FP

1. Convert decimal to
binary.

2. Convert binary to
normalized scientific
notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent
and encode E as
unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

CSE351, Summer 2020L06: Floating Point II

Precision and Accuracy

❖ Precision is a count of the number of bits in a
computer word used to represent a value

▪ Capacity for accuracy

❖ Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

▪ High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

▪ Example: float pi = 3.14;
• pi will be represented using all 24 bits of the mantissa (highly

precise), but is only an approximation (not accurate)

15

CSE351, Summer 2020L06: Floating Point II

Need Greater Precision?

❖ Double Precision (vs. Single Precision) in 64 bits

▪ C variable declared as double

▪ Exponent bias is now 210–1 = 1023

▪ Advantages: greater precision (larger mantissa),
greater range (larger exponent)

▪ Disadvantages: more bits used,
slower to manipulate

16

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Summer 2020L06: Floating Point II

Representing Very Small Numbers

❖ But wait… what happened to zero?

▪ Using standard encoding 0x00000000 =

▪ Special case: E and M all zeros = 0
• Two zeros! But at least 0x00000000 = 0 like integers

❖ New numbers closest to 0:

▪ a = 1.0…02×2-126 = 2-126

▪ b = 1.0…012×2-126 = 2-126 + 2-149

▪ Normalization and implicit 1 are to blame

▪ Special case: E = 0, M ≠ 0 are denormalized numbers

17

0
+∞-∞

Gaps!

a

b

CSE351, Summer 2020L06: Floating Point II

Denorm Numbers

❖ Denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero
and the smallest normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

18

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Summer 2020L06: Floating Point II

Other Special Cases

❖ E = 0xFF, M = 0: ± ∞

▪ e.g. division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0: Not a Number (NaN)

▪ e.g. square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging

❖ New largest value (besides ∞)?

▪ E = 0xFF has now been taken!

▪ E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

19

CSE351, Summer 2020L06: Floating Point II

Floating Point Encoding Summary

E M Meaning

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN

CSE351, Summer 2020L06: Floating Point II

Floating Point Interpretation Flow Chart

21

FP Bits
What is the
value of E?

What is the
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE351, Summer 2020L06: Floating Point II

Floating point topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
22

CSE351, Summer 2020L06: Floating Point II

Tiny Floating Point Representation

❖ We will use the following 8-bit floating point
representation to illustrate some key points:

❖ Assume that it has the same properties as IEEE
floating point:

▪ bias =

▪ encoding of −0 =

▪ encoding of +∞ =

▪ encoding of the largest (+) normalized # =

▪ encoding of the smallest (+) normalized # =

23

S E M

1 4 3

CSE351, Summer 2020L06: Floating Point II

Distribution of Values

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the bit pattern of the next
largest representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser toward zero

24

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

CSE351, Summer 2020L06: Floating Point II

Floating Point Rounding

❖ The IEEE 754 standard actually specifies different
rounding modes:

▪ Round to nearest, ties to nearest even digit

▪ Round toward +∞ (round up)

▪ Round toward −∞ (round down)

▪ Round toward 0 (truncation)

❖ In our tiny example:

▪ Man = 1.001 01 rounded to M = 0b001

▪ Man = 1.001 11 rounded to M = 0b010

▪ Man = 1.001 10 rounded to M = 0b010

25

This is extra
(non-testable)

material

S E M

1 4 3

CSE351, Summer 2020L06: Floating Point II

Floating Point Operations: Basic Idea

❖ x +f y = Round(x + y)

❖ x *f y = Round(x * y)

❖ Basic idea for floating point operations:

▪ First, compute the exact result

▪ Then round the result to make it fit into the specified
precision (width of M)
• Possibly over/underflow if exponent outside of range

26

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351, Summer 2020L06: Floating Point II

Mathematical Properties of FP Operations

❖ Overflow yields ±∞ and underflow yields 0

❖ Floats with value ±∞ and NaN can be used in
operations

▪ Result usually still ±∞ or NaN, but not always intuitive

❖ Floating point operations do not work like real math,
due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

▪ Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

▪ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

27

CSE351, Summer 2020L06: Floating Point II

Aside: Limits of Interest

❖ The following thresholds will help give you a sense of
when certain outcomes come into play, but don’t
worry about the specifics:

▪ FOver = 2bias+1 = 28

• This is just larger than the largest representable normalized number

▪ FDenorm = 21−bias = 2−6

• This is the smallest representable normalized number

▪ FUnder = 21−bias−𝑚 = 2−9

• 𝑚 is the width of the mantissa field

• This is the smallest representable denormalized number

28

This is extra
(non-testable)

material

CSE351, Summer 2020L06: Floating Point II

Floating Point Encoding Flow Chart

29

= special case

Value 𝑣 to
encode

Is 𝑣 not a
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when
rounded,
≥ FOver?

Is 𝑣 , when
rounded,

< FDenorm?

Is 𝑣 , when
rounded,
< FUnder?

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

CSE351, Summer 2020L06: Floating Point II

Example Question [FP II - a]

❖ Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28 + 27?

▪ No voting

A. + 256

B. + 384

C. + ∞

D. NaN

E. We’re lost…
30

S E M

1 4 3

CSE351, Summer 2020L06: Floating Point II

Polling Question [FP II - b]

❖ Using our 8-bit representation, what value gets
stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

▪ Vote at http://pollev.com/pbjones

A. + 2.5

B. + 2.625

C. + 2.75

D. + 3.25

E. We’re lost…
31

S E M

1 4 3

http://pollev.com/pbjones

CSE351, Summer 2020L06: Floating Point II

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

32

CSE351, Summer 2020L06: Floating Point II

Tiny Floating Point Example

❖ 8-bit Floating Point Representation

▪ The sign bit is in the most significant bit (MSB)

▪ The next four bits are the exponent, with a bias of 24-1–1 = 7

▪ The last three bits are the mantissa

❖ Same general form as IEEE Format

▪ Normalized binary scientific point notation

▪ Similar special cases for 0, denormalized numbers, NaN, ∞

33

S E M

1 4 3

CSE351, Summer 2020L06: Floating Point II

Dynamic Range (Positive Only)

34

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Summer 2020L06: Floating Point II

Special Properties of Encoding

❖ Floating point zero (0+) exactly the same bits as integer zero
▪ All bits = 0

❖ Can (Almost) Use Unsigned Integer Comparison
▪ Must first compare sign bits

▪ Must consider 0- = 0+ = 0

▪ NaNs problematic

• Will be greater than any other values

• What should comparison yield?

▪ Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

35

