Floating Point II

CSE 351 Summer 2020

Instructor: Teaching Assistants:

Porter Jones

Amy Xu Callum Walker

Sam Wolfson

Tim Mandzyuk

http://xkcd.com/571/

Administrivia

- Questions doc: <u>https://tinyurl.com/CSE351-7-6</u>
- hw6 & hw7 due Friday (7/10) 10:30am
- Lab 1a due tonight at 11:59 pm!!!
 - Submit pointer.c and lab1Areflect.txt
- Lab 1b due Friday (7/10)
 - Submit aisle_manager.c, store_client.c and lab1Breflect.txt

Fixed Point Representation

- Implied binary point. Two example schemes:
 - #1: the binary point is between bits 2 and 3 $b_7 b_6 b_5 b_4 b_3$ [.] $b_2 b_1 b_0$

#2: the binary point is between bits 4 and 5 $b_7 b_6 b_5$ [.] $b_4 b_3 b_2 b_1 b_0$

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2 x 10⁷ In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1 x 2⁴
 - Not 0.000101, but 1.01 x 2⁻⁴
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0×10⁻⁹
 Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

 $2^{-1} = 0.5$

 $7^{-2} = 0.25$

 $7^{-3} = 0.125$

7'' = 0.0625

Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - <u>Example</u>: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - <u>Example</u>: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - <u>Example</u>: $1101.001_2 = 1.101001_2 \times 2^3$
- Practice: Convert 11.375₁₀ to normalized binary scientific notation

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- ✤ IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Se normalized, base 2 scientific notation:
 - Value: ±1 × Mantissa × 2^{Exponent}
 - Bit Fields: $(-1)^{S} \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of 2^{w-1}-1 = 127
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - $Exp = 1 \rightarrow E = 0b$
 - $Exp = 127 \rightarrow E = 0b$
 - $Exp = -63 \rightarrow E = 0b$

The Mantissa (Fraction) Field

$$(-1)^{s} \times (1 . M) \times 2^{(E-bias)}$$

Note the implicit 1 in front of the M bit vector

- Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Polling Question [FP I – a]

- What is the correct value encoded by the following floating point number?

 - Vote at <u>http://pollev.com/pbjones</u>
 - A. + 0.75
 - **B.** + 1.5
 - **C.** + 2.75
 - D. + 3.5
 - E. We're lost...

Normalized Floating Point Conversions

- ♦ FP → Decimal
 - Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign $(-1)^{S}$.
 - Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

- ♦ Decimal → FP
 - Convert decimal to binary.
 - Convert binary to normalized scientific notation.
 - **3.** Encode sign as S (0/1).
 - 4. Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now 2¹⁰-1 = 1023
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x0000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x0000000 = 0 like integers
- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: ± 0.0...01_{two}×2⁻¹²⁶ = ± 2⁻¹⁴⁹
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

- * $E = OxFF, M = 0: \pm \infty$
 - e.g. division by 0
 - Still work in comparisons!
- * E = OxFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty \infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)
- ♦ New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

	E	Μ	Meaning	
smallest E { (all 0's) {	0x00	0	± 0	
	0x00	non-zero	± denorm num	
everything { elsc	0x01 – 0xFE	anything	± norm num	
largest E) (all 1's)	OxFF	0	<u>+</u> ∞	
	OxFF	non-zero	NaN	

Floating Point Interpretation Flow Chart

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Tiny Floating Point Representation

 We will use the following 8-bit floating point representation to illustrate some key points:

- Assume that it has the same properties as IEEE floating point:
 - bias =
 - encoding of -0 =
 - encoding of $+\infty =$
 - encoding of the largest (+) normalized # =
 - encoding of the smallest (+) normalized # =

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow (Exp too large)
 - Between zero and smallest denorm Underflow (Exp too small)
 - Between norm numbers? Rounding
- Given a FP number, what's the bit pattern of the next largest representable number?
 - What is this "step" when Exp = 0?
 - What is this "step" when Exp = 100?
- Distribution of values is denser toward zero

Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward +∞ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)
- In our tiny example:
 - Man = 1.001 01 rounded to M = 0b001
 - Man = 1.001 11 rounded to M = 0b010
 - Man = 1.001 10 rounded to M = 0b010

Floating Point Operations: Basic Idea

Value = (-1)^S×Mantissa×2^{Exponent}

$$\star x +_f y = Round(x + y)$$

$$* x *_{f} y = Round(x * y)$$

Basic idea for floating point operations:

- First, compute the exact result
- Then *round* the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

- * Overflow yields $\pm \infty$ and underflow yields 0
- ✤ Floats with value ±∞ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to rounding
 - Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1e100)

Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2 30.0000000000003553 30

0

- Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

3.14

Aside: Limits of Interest

This is extra (non-testable) material

The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:

• **FOver** =
$$2^{bias+1} = 2^8$$

- This is just larger than the largest representable normalized number
- **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number
- **FUnder** = $2^{1-\text{bias}-m} = 2^{-9}$
 - *m* is the width of the mantissa field
 - This is the smallest representable denormalized number

Floating Point Encoding Flow Chart

Example Question [FP II - a]

Using our 8-bit representation, what value gets stored when we try to encode 384 = 2⁸ + 2⁷?

- No voting
- A. + 256
- **B.** + 384
- **C.** +∞
- D. NaN
- E. We're lost...

Polling Question [FP II - b]

Using our 8-bit representation, what value gets stored when we try to encode 2.625 = 2¹ + 2⁻¹ + 2⁻³?

- Vote at <u>http://pollev.com/pbjones</u>
- A. + 2.5
- **B.** + 2.625
- C. + 2.75
- D. + 3.25
- E. We're lost...

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of 2⁴⁻¹-1 = 7
 - The last three bits are the mantissa
- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	S	E	Μ	Exp	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	$2/8 \times 1/64 = 2/512$
numbers	•••				
	0	0000	110	-6	$6/8 \times 1/64 = 6/512$
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	$9/8 \times 1/64 = 9/512$
	0	0110	110	-1	$14/8 \times 1/2 = 14/16$
Normalized	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
numbors	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	$14/8 \times 128 = 224$
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

Special Properties of Encoding

- ✤ Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity