Floating Point II

CSE 351 Summer 2020

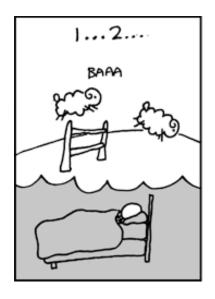
Instructor: Teaching Assistants:

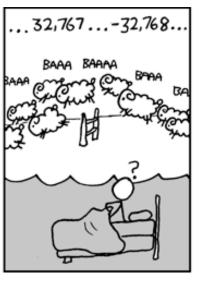
Porter Jones Amy Xu

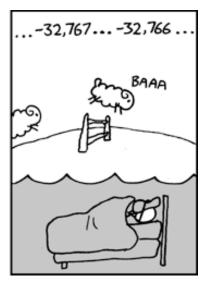
Callum Walker

Sam Wolfson

Tim Mandzyuk







http://xkcd.com/571/

Administrivia

Questions doc: https://tinyurl.com/CSE351-7-6

♦ hw6 & hw7 due Friday (7/10) - 10:30am

- Lab 1a due tonight at 11:59 pm!!!
 - Submit pointer.c and lab1Areflect.txt

- Lab 1b due Friday (7/10)
 - Submit aisle_manager.c, store_client.c and lab1Breflect.txt

Fixed Point Representation

Implied binary point. Two example schemes:

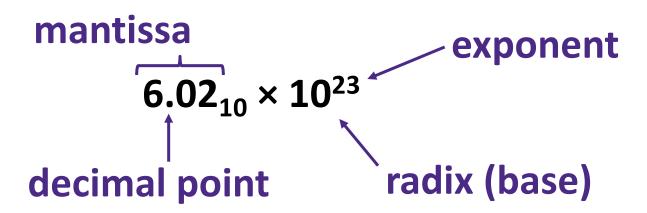
```
#1: the binary point is between bits 2 and 3 b_7 b_6 b_5 b_4 b_3 [.] b_2 b_1 b_0 #2: the binary point is between bits 4 and 5 b_7 b_6 b_5 [.] b_4 b_3 b_2 b_1 b_0
```

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Floating Point Representation

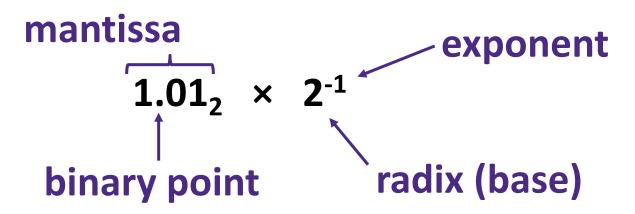
- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2 x 10⁷ In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1 x 2⁴
 - Not 0.000101, but 1.01 x 2⁻⁴
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent

Scientific Notation (Decimal)



- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0×10⁻⁹
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (Binary)



- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

$$2^{-1} = 0.5$$

 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- * Practice: Convert 11.375₁₀ to normalized binary scientific notation

 1) west to be any point 11.375

 8+2+1 .25+.125

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

❖ IEEE 754

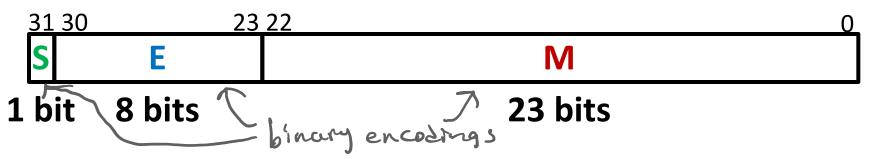
- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs

Driven by numerical concerns

- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: ±1 × Mantissa × 2^{Exponent}
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E



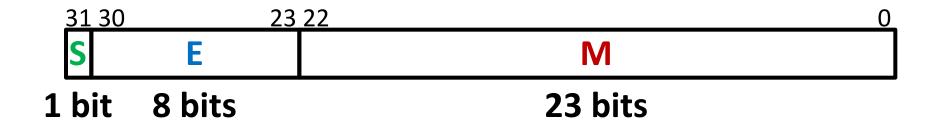
The Exponent Field

$$w=8$$
 $2^{w-1}-1=2^{\frac{3}{2}}-1$ = 128-1 = 127

- Use biased notation
 - Read exponent as unsigned, but with bias of 2^{w-1}-1 ≠ 127
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:

■ Exp = 1
$$\rightarrow$$
 |2% \rightarrow E = 0b |000 0000

The Mantissa (Fraction) Field



$$(-1)^{s} \times (1.M) \times 2^{(E-bias)}$$

- Note the implicit 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Polling Question [FP I – a]

- What is the correct value encoded by the following floating point number?

 - Vote at http://pollev.com/pbjones

$$A. + 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

$$Exp = Ebits - bits = 128 - 127 = 1$$

$$M = 1.1100...00$$

$$+1.11.2 \times 2^{1}$$

$$= 11.12$$

$$2+1+.5 = 3.5$$

Normalized Floating Point Conversions

- ❖ FP → Decimal
 - Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign (-1)^S.
 - 4. Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

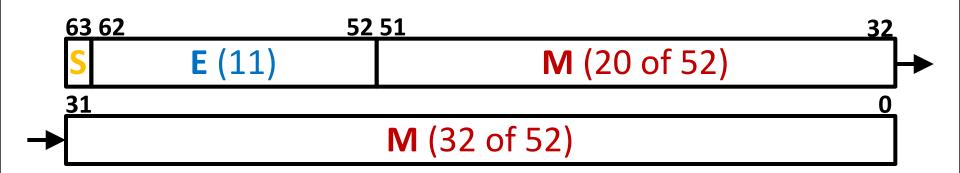
- ♦ Decimal → FP
 - 1. Convert decimal to binary.
 - 2. Convert binary to normalized scientific notation.
 - 3. Encode sign as S(0/1).
 - Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits



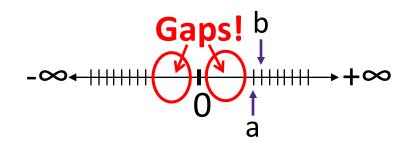
- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- * But wait... what happened to zero? $E \times P = -127$ Mon = 1.00....0

 Using standard encoding $0 \times 000000000 = 1.0 \times 2^{-127} \neq 0$

 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers 0, 200000005-0
- New numbers closest to 0:
 - a = $1.0...0_2 \times 2^{-126} = 2^{-126} = 2^{-126} + 2^{-149}$ b = $1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$



- Normalization and implicit 1 are to blame
- Special case: E = 0, $M \neq 0$ are denormalized numbers O. M

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$ So much closer to 0
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

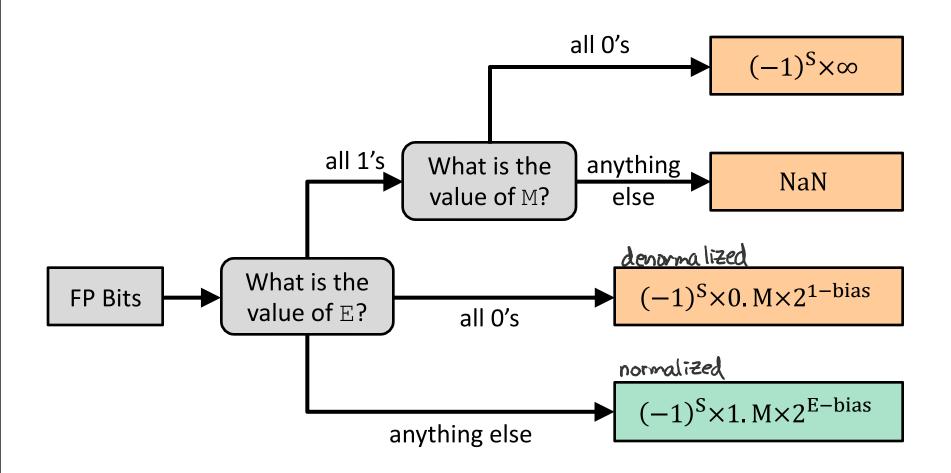
Other Special Cases

- \star E = 0xFF, M = 0: $\pm \infty$
 - e.g. division by 0
 - Still work in comparisons!
- \bullet E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

	E	M	Meaning
smallest E { (all 0's)	0x00	0	± 0
	0x00	non-zero	± denorm num
everything { else	0x01 – 0xFE	anything	± norm num
largest E	OxFF	0	± ∞
largest E) (all 1's)	OxFF	non-zero	NaN

Floating Point Interpretation Flow Chart



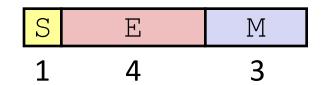
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Tiny Floating Point Representation

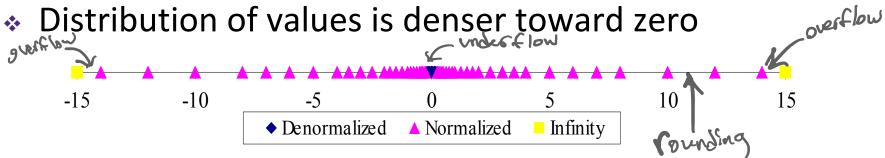
• We will use the following 8-bit floating point representation to illustrate some key points:



- Assume that it has the same properties as IEEE
 - floating point: bias = $2^{w-1} 1 = 2 1 = 8 1 = 7$
 - encoding of -0 = Db / ODOO OOD = Ox80
 - encoding of $+\infty = 260$
 - encoding of the largest (+) normalized # = $\partial b \circ \mathcal{A}^{(1)}$
 - encoding of the smallest (+) normalized # = 050 000 = 000 = 000 = 000 = 000

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow (Exp too large)
 - Between zero and smallest denorm Underflow (Exp too small)
 - Between norm numbers?
 Rounding
- - What is this "step" when Exp = 0? $2^{-2.3}$
 - What is this "step" when $Exp = 100? = 2^{7}$



Floating Point Rounding

This is extra (non-testable) material

 $\mathbf{F}_{\mathbf{i}}$

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)
- In our tiny example:
 - Man = 1.001 01 rounded to M = 0b001 3 4 3
 - Man = 1.001 11 rounded to M = 0b010 vP
 - Man = 1.001 10 rounded to M = 06010 up (even Man = 1.000 10 rounded +0 M = 06000 down & digit

Μ

Floating Point Operations: Basic Idea

Value = $(-1)^{s}$ ×Mantissa×2^{Exponent}

- $\star x +_f y = Round(x + y)$
- $\star x \star_f y = Round(x \star y)$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

- * Overflow yields $\pm \infty$ and underflow yields 0
- ❖ Floats with value ±∞ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- * Floating point operations do not work like real math, due to rounding
 - Not associative: (3.14+1e100) -1e100 != 3.14+(1e100-1e100)
 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

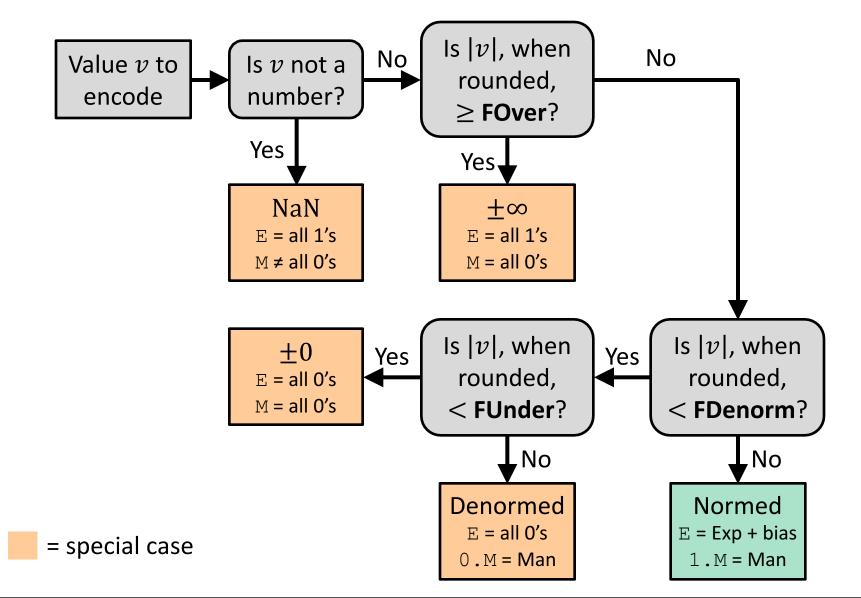
 30.000000000000003553
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Aside: Limits of Interest

This is extra (non-testable) material

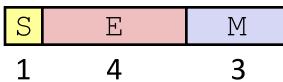
- The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
 - **FOver** = $2^{\text{bias}+1} = 2^8$
 - This is just larger than the largest representable normalized number
 - **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number
 - **FUnder** = $2^{1-\text{bias}-m} = 2^{-9}$
 - m is the width of the mantissa field
 - This is the smallest representable denormalized number

Floating Point Encoding Flow Chart



Example Question [FP II - a]

* Using our **8-bit** representation, what value gets stored when we try to encode **384** = $2^8 + 2^7$? = $2^8 (1+2^{-1})$

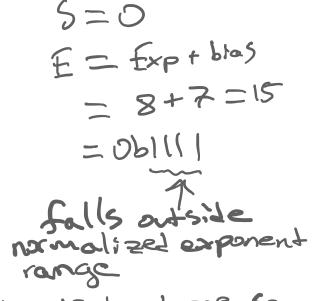


No voting

$$A. + 256$$

$$B. + 384$$

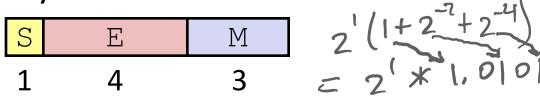
- D. NaN
- E. We're lost...



This number is too large so we stoce too 5000 1111 000

Polling Question [FP II - b]

* Using our **8-bit** representation, what value gets stored when we try to encode **2.625** = $2^1 + 2^{-1} + 2^{-3}$?



Vote at http://pollev.com/pbjones

$$B. + 2.625$$

$$C. + 2.75$$

$$D. + 3.25$$

E. We're lost...

$$S = 0$$
 $E = Exp + blos$
 $= 1 + 7 = 8$
 $= 0b1000$
 $M = 0b000$

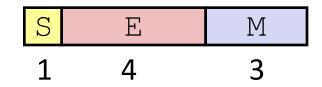
Shore 3 bit 5

Shore 3 bit 5

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example



- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

)
n
1
_
elow
ove
elo

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity