W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point |

Integers Il, Floating Point |
CSE 351 Summer 2020

Instructor: Teaching Assistants:
Porter Jones Amy Xu

Callum Walker

Sam Wolfson

Tim Mandzyuk

1983: 2018:

CSE351,

MY “UNICODE" STANDARD @smmm ANGUS KING ©
SHOULD HELP REDUCE
PROBLEMS CAUSED By | | GRERT NEWS PR MANE —1 ERE

GETTING A LOBSTER MO0 THANKS
INCOMPATIBLE BINARY TO @UNICODE. FOR RECOGNIZING THE

TEXT ENCODINGS IMPACT ormns CRIMCAL CRUSTACEAN,
IN MAINE AND ACROSS THE COUNTRY,

YOURS TRULY
SENATOR & 1Y

WHAT...JHAT HAPPENED
IN THOSE THIRTY YEARS?

THINGS GOT
A LIME
WEIRD OKAY?

1

http://xkcd.com/1953/

Summer 2020

w UNIVERSITY of WASHINGTON LO05: Integers Il, Floating Point | CSE351, Summer 2020
° ° ° °
Administrivia

» Questions doc: https://tinyurl.com/CSE351-7-1
+» hw4 and hw5 due Monday 7/6 — 10:30am
+» hw6 and hw7 due Friday 7/10 — 10:30am

= Will post Monday’s slides later today so you can get started

+» Lab 1a due Monday (7/6) (try to finish by Friday!)

= Submitpointer.cand lablAreflect.txt to
Gradescope

+ Lab 1b released tomorrow, due 7/10

= Bit manipulation problems using custom data type

= Today’s bonus slides have helpful examples, omorrow’s
section will have helpful examples too

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Gradescope Lab Turnin

+ Make sure you pass the File and Compilation Check!

+» Doesn’t indicate if you passed all tests, just indicates
that all the correct files were found and there were
no compilation or runtime errors.

+» Use the testing programs we provide to check your
solution for correctness (on attu or the VM)

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Quick Aside: C Macros

Lablb will have you use some C macros for bit masks

Syntax is of the form:
#define NAME expression
Can now use “NAME” instead of “expression” in code
Useful to help with readability/factoring in code
= Especially useful for defining constants such as bit masks!

» Are NOT exactly the same as a constant in Java

= Does naive copy and replace before compilation.

= Everywhere the characters “NAME” appear in the code, the
characters “expression” will now appear instead.

See Lecture 4 (Integers 1) slides for example usages

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Integers

+ Binary representation of integers

= Unsigned and signed
+ Shifting and arithmetic operations — useful for Lab 1a

+» In C: Signed, Unsigned and Casting

+» Consequences of finite width representations
= Qverflow, sign extension

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Two’s Complement Arithmetic =
~ S -2 4 ¢
P S Lad e gatIe ueiglt O\O —_— —

% The same addition procedure works for both
unsigned and two’s complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum modulo 2%

—

+ 4-bit Examples:

HW TC HW TC

2

0100! *M Y lo100! 4
+0011! +7 +1101" -

=0ul) 1+ =4000) | 4]

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

Abé’*:“? bit representation of x
v [+ bit representation of —x
0 (ignoring the carry-out bit)

= What are the 8-bit negative encodings for the following?

00000001 00000010 11000011

4+ P20V D 4+ P20V D 4+ P20V D

00000000 00000000 00000000

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

—obit...tu
bit representation of x x ¥ («-x> -
+ bit representation of —x x + L"‘"} - =]
0 (ignoring the carry-out bit) x } (.-._y 4—() - 9O

[—X :A«x-kB
= What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
~00000000 »00000000 100000000

These are the bitwise complement plus 1!
-x == ~x + 1

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Signed/Unsigned Conversion Visualized

« Two’s Complement — Unsigned u
P 5 ® UMax = oyt .18 =2 =)

= Ordering Inversion ® UMax-—1
" Negative — Big Positive

ovle.0=[2"""

® TMax +1 .

w-t — / Unsigned
[Ol)lu, :

7 -\ =% TMax @ ® TMax Range

2’s Complement
Range

O\ . W\

w-)

-7 :O‘,\ 00..90

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Values To Remember

Unsigned Values +« Two’s Complement Values
= UMin 0b00...0 = TMin 0b10...0
0 —2w-1

= UMax 0bl1l..1 = TMax 0b01..1
2w —1 2wl —1
= —1 0bl1l..1

Example: Values forw = 64

UMax 18,446,744,073,709,551,615 2E EE O gE gE gE gE gE mBg

TMax 9,223,372,036,854,775,807 JE EE FE FE EE R FE FE

TMin -9,223,372,036,854,775,808 g0 00 00 00 00 00 00 0O
-1 -1 FF FF FF FF FF FF FF FF

0 0 00 00 00 00 00 00 00 00

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Integers

+ Binary representation of integers

= Unsigned and signed
+ Shifting and arithmetic operations — useful for Lab 1a

% In C: Signed, Unsigned and Casting

+» Consequences of finite width representations
= Qverflow, sign extension

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

In C: Signed vs. Unsignhed

+» Casting
" Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;
. : !
= Explicit casting (nes Eﬁ?e @pre 21"
« tx = (int) ux;
+ Uy = (unsigned int) ty;
= Implicit casting can occur during assignments or function

calls 55 ko Y acger yardade /pacancror a5
o X =ux;

© uy=ty;

Mo sccucs w/pinkd)

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Casting Surprises

+ Integer literals (constants)
= By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned
- Examples: 0U, 4254967259u

+» Expression Evaluation

= When you mixed unsigned and signed in a single expression,
then signed values are implicitly cast to unsigned /[unsiged

1 H ‘\Abw\'mo\"' "
" Including comparison operators <, >, ==, <=, >= s

W UNIVERSITY of WASHINGTON

CSE351, Summer 2020

LO5: Integers Il, Floating Point |

Casting Surprises

+» 32-bit examples:
" TMin=-2,147,483,648, TMax =2,147,483,647

Left Constant

Right Constant

Interpretation

0
0000 0000 0000 0000 0000 0000 0000 0000

ou
0000 0000 0000 0000 0000 0000 0000 0000

Jashy Ned

-1
11111111111111111111 11111111 1111

0
0000 0000 0000 0000 0000 0000 0000 0000

gﬁo)méc}

-1
111112111111111111111 11111111 1111

ou
0000 0000 0000 0000 0000 0000 0000 0000

(;m"‘:)@

2147483647

0111111117111111111111111 11111111

-2147483648
1000 0000 0000 0000 0000 0000 0000 0000

2147483647V
0111111111111111111111111111 1111

-2147483648
1000 0000 0000 0000 0000 0000 0000 0000

Unsi ?he_«l

-1
11111111111111111111 11111111 1111

-2
111111111111111111111111 1111 1110

5igned

(unsigned) -1
111111111111 111111111111 1111 1111

-2
11111211111111111 111111111111 1110

uaﬁfﬁw"-a

2147483647

0111111117111111111111111 11111111

2147483648U
1000 0000 0000 0000 0000 0000 0000 0000

Dn 5: 3V\,€a§

2147483647
0111111111111111 11111111 1111 1111

\),\\l\]‘\\‘,\(l\}]]g

(int) 2147483648U
1000 0000 0000 0000 0000 0000 0000 0000

e, 93@

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Integers

% Binary representation of integers
= Unsigned and signed
+ Shifting and arithmetic operations — useful for Lab 1a

+ In C: Signed, Unsigned and Casting
+» Consequences of finite width representations
= Overflow, sign extension

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Arithmetic Overflow

Bits [Unsigned| Signed
0000 O Umzy
0001 1
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

<+ When a calculation produces a result
that can’t be represented in the
current encoding scheme
" |nteger range limited by fixed width

= Can occur in both the positive and negative
directions

TME C and Java ignore overflow exceptions
TMED

IO Uu|B|[W[N

®= You end up with a bad value in your
program and no warning/indication... oops!

[EEY
o

(B
[

=
N

=
w

Y
o

=
(92

W UNIVERSITY of WASHINGTON

Overflow: Unsignhed

» Addition: drop carry bit (—2N)
15 1111
+ 2 + 0010

7 20001
1

"W~
= Subtraction: borrow (+2N)

1 10001
- 0010
1111

LO5: Integers Il, Floating Point |

CSE351, Summer 2020

1111 50000
1110 0001
1101 0010

1100 0011

Unsigned
1111011 0100 [4

1010 0101
1001 0110
1000 0111

modular arithmetic

N
{ +2" because of Jz"-;.\(o

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Overflow: Two’s Complement

+ Addition: (+) + (+) = (=) result?

0110
+ 0011 1111 0000

1 O O 1 1110 0001
1101 0010

1100 Two’s 0011
+» Subtraction: (—) + (—) = (+)? <\ 1011 Complement

=’/ 1001
- 3 - 0011

- 10" 0110
0

[

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Sign Extension

+~ What happens if you convert a signed integral data
type to a larger one?

L byte 2 bytes 4 bytes 8 Lytes
" e.g. char » short - 1nt - long

+ 4-bit — 8-bit Example:
= Positive Case 4-bit: 0010
V' . Add0’s? 8-bit: 00000010

"= Negative Case?

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Polling Question [Int Il - a]

+ Which of the following 8-bit numbers has the same
signed value as the 4-bit number Ob;EZOO?
3 1 9°
" Underlined digit = MSB '-123;7‘; PRTTY
= Vote at http://pollev.com/pbjones -

\

A{ Cdéé i‘cme$> Pogiviue 3 2

Alve -Qc?.(' 2+2 = =L

B 0b 1000 1100 (&2 k¥ ™ (o5 es)

€ b 1111200 B ee) |t LT
De o8 llOO/JR_(Surlicade) "Z?fzc ek o ~S2
E. We're lost...

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Sign Extension

Task: Given a w-bit signed integer X, convert it to
w+k-bit signed integer X’ with the same value

Rule: Add k copies of sign bit
= Let x; be the i-th digit of X in binary

I
o X — xw_l’ ---,xw_l"xW_l, xw_z, ...,X1, xO’

|
k copies of MSB original X

<€

X

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Sign Extension Example

+» Convert from smaller to larger integral data types

+» Cautomatically performs sign extension
= Java too

short int x = 12345;
int ix = (int) x;
short int y = -12345;
int 1y (int) vy,

.)nOB_QOI‘
Decimal Hex / Binary
12345 30 39 00110000 00111001

12345] 00 00 30 39 00000000 00000000 00110000 00111001
-12345 CEF C7 11001111 11000111
-12345 | FF FF CF C7 11111111 11111111 11001111 11000111

|

o) 1100

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point |

Practice Question

CSE351, Summer 2020

_with your neighbor(s)!

"For the following expressions, find a value of signed char x,\
if there exists one, that makes the expression TRUE. Compare

% Assume we are using 8-bit arithmetic:

Ud\,cﬁ wed Exar»\cle;
"o <==) (unsigned char) x &k~ O

Al solutiong:

‘wol ks fcall

(§) ¢
D¢ f >= ;128U
Lbloov o900

m\\DXAO

"x = (x>>2)<<Z

X W e {owe St
10 it § asC not 9b90

| X == =X
« Hint: there are two solutions

.D x':ow ...;._D — =
@ x.;&b\'.'.a = "'2’£

—

e ——

" (x < 1280) && (x > OX3F)‘R:

J00 ¥ ofe exact Y
\ ©po\

23

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Aside: Unsigned Multiplication in C

Operands:
w bits

True Product:
2w bits

Discard w bits: UMult,(u , v)
w bits

+» Standard Multiplication Function

= |gnores high order w bits

+» Implements Modular Arithmetic

= UMult,(u,v)=u-v mod 2%

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Aside: Multiplication with shift and add

+» Operation u<<k gives u*2k

= Both signed and unsigned

Operands: w bits

True Product: w + k bits u - 2k

Discard k bits: w bits UMult,(u , 2%)
TMult,(u , 2¥)

« Examples:
B <<3
B u<<5 - u<<3 == u * 24

" Most machines shift and add faster than multiply
- Compiler generates this code automatically

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Number Representation Revisited

+» What can we represent so far?
= Signed and Unsigned Integers
= Characters (ASCII)
= Addresses

+» How do we encode the following:
= Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x1023) B Floating
= Very small numbers (e.g. 6.626x103%) POint
= Special numbers (e.g. ==, NaN)

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Floating Point Topics

Fractional binary numbers

|IEEE floating-point standard
Floating-point operations and rounding
Floating-point in C

% There are many more details that we won’t cover
" |t's a 58-page standard...

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Representation of Fractions - 1

—

= 72

“Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit /X}(»;yyy
N\

representation: 50

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Representation of Fractions

“Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

' XX.YYYY
Example 6-bit
representation: /20/ 2? \22\23\

In this 6-bit representation:

- O
" What is the encoding and value of O0. 09001, -
the smallest (most negative) number? "’\ M

What is the encoding and value of |1, \l” —"\ Z

the largest (most positive) number?
'2_ - lD. DDWZ

What is the smallest number greater — v
than 2 that we can represent? QOOO! ; = 2t7Z

—

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Fractional Binary Numbers

i
21'—1

4
2

‘ — 1

¢ belbO.b—lb—Zb—3 ¢ o0 b

12— |

1/4
1/8

~

2
Representation
= Bits to right of “binary point” represent fractional powers of 2
" Represents rational number: 'Z b, - K

K=

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Fractional Binary Numbers

+» Value Representation

= 5and 3/4 101.11,
= 2and 7/8 10.111,
" 47/64 0.101111,

« Observations

= Shift left = multiply by power of 2
= Shift right = divide by power of 2
= Numbers of theform 0.111111.., are just below 1.0

= 1/2+1/4+1/8+...+1/2"+...— 1.0
» Use notation 1.0—¢

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Limits of Representation

<« Limitations:

= Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2Y (y can be negative)

= Other rational numbers have repeating bit representations

Value: Binary Representation:
. 1/3 =0.333333..,,= 0.01010101[01]...,
- 1/5 = 0.001100110011[0011]...,
- 1/10 = 0.0001100110011[0011]...,

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point |

CSE351, Summer 2020

Fixed Point Representation

+ Implied binary point. Two example schemes:

pote H1: the binary point is between bits 2 and 3

8% 5 b, b beby by [1b, by by 5 e 1ste

#2: the binary pointm 4 and 5

VA'OJ(Q /?b7 b6 b5 [] b4 b3 b2 b1 bO \2.25 ecaca‘ﬂior\
No~—— W

(o)
+» Wherever we put the binary point, with fixed point

representations there is a trade off between the
amount of range and precision we have

+ Fixed point = fixed range and fixed precision
= range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers

+» Hard to pick how much you need of each!

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Floating Point Representation

+ Analogous to scientific notation

" |n Decimal:

- Not 12000000, but 1.2 x 107 In C: 1.2e7
- Not 0.0000012, but 1.2 x 10° In C: 1.2e-6

= |n Binary:
- Not 11000.000, but 1.1 x 24
- Not 0.000101, but 1.01 x 24

% We have to divvy up the bits we have (e.g., 32) among:
= the sign (1 bit)
= the mantissa (significand)
" the exponent

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Scientific Notation (Decimal)

mantissa
, - exponent

6.02,, x 1023

I N\

decimal point radix (base)

» Normalized form: exactly one digit (non-zero) to left
of decimal point

+ Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x10°
= Not normalized: 0.1x10%8,10.0x1010

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Scientific Notation (Binary)

mantissa
, _— exponent

1.01, x 21

I N\

binary point radix (base)

«» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

= Declare such variable in Cas f1loat (or double)

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

27" =05
Scientific Notation Translation 27 =045

17 = 0.12%
+ Convert from scientific notation to binary point 27 = 0.0625

= Perform the multiplication by shifting the decimal until the exponent
disappears
. Example: 1.011,%24=10110, = 224,
. Example: 1.011,%22=0.01011, = 0.34375,

+» Convert from binary point to normalized scientific notation

= Distribute out exponents until binary point is to the right of a single digit
- Example: 1101.001, = 1.101001,x23

+ Practice: Convert 11.375,,to normalized binary scientific
notation gf

R ¥ 2+) 25+ ,125 <
Loty . o, » LOlel k2

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Summary

+ Sign and unsigned variables in C

= Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers

- Type of variables affects behavior of operators (shifting, comparison)

+» We can only represent so many numbers in w bits
= When we exceed the limits, arithmetic overflow occurs

= Sign extension tries to preserve value when expanding

+ Floating point approximates real numbers
= We will discuss more details on Monday!

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1.

+ Extract the 2"d most significant byte of an int

+ Extract the sign bit of a signed int

+ Conditionals as Boolean expressions

W UNIVERSITY of WASHINGTON

LO5: Integers Il, Floating Point |

Using Shifts and Masks

CSE351, Summer 2020

Extract the 2" most significant byte of an int:

" First shift, then mask: (x>>16)

& OxFF

X

00000001

00000010

00000011 00000100

x>>16

00000000 00000000 OOOOOOOl|OOOOOOlO

OxFF

00000000 00000000 00000000 11111111

(x>>16) & OxFF

00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

X

00000001 00000010 00000011 00000100

OxFF0000

00000000 11111111 00000000 00000000

x & OxFF0000

00000000

00000010,

00000000 00000000

(x&0xFF0000) >>16

00000000 00000000 00000000700000010

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Using Shifts and Masks

+ Extract the sign bit of a sighed int:
= First shift, then mask: (x>>31) & O0x1

- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

X 0p000001 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 00000000
Ox1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 (00000000 00000000 OOO0OOO0OO 00000000

p 4 10000001 00000010 00000011 00000100

—

E————

x>>31 11111111 11111111 11111111 11111111
Ox1 00000000 00000000 00000000 00000001
(x>>31) & Ox1 (00000000 00000000 00000000 00000001

W UNIVERSITY of WASHINGTON LO5: Integers II, Floating Point | CSE351, Summer 2020

Using Shifts and Masks

+ Conditionals as Boolean expressions
" Forint x, whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 11111111 111112111 11111111
Ix 00000000 00000000 00000000 00000000
1%<<31 00000000 00000000 00000000 00000000
('x<<31)>>31 |[00000000 00000000 0OOOOOOOO O0OO0OOO0OO

= Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?y:z;
e a=(((x<<31)>>31)&y) | (((!'x<<31)>>31)6&z);

