Integers II, Floating Point I
CSE 351 Summer 2020

Instructor: Porter Jones
Teaching Assistants: Amy Xu, Callum Walker, Sam Wolfson, Tim Mandzyuk

http://xkcd.com/1953/
Administrivia

- Questions doc: https://tinyurl.com/CSE351-7-1
- hw4 and hw5 due Monday 7/6 – 10:30am
- hw6 and hw7 due Friday 7/10 – 10:30am
 - Will post Monday’s slides later today so you can get started
- Lab 1a due Monday (7/6) (try to finish by Friday!)
 - Submit `pointer.c` and `lab1Areflect.txt` to Gradescope
- Lab 1b released tomorrow, due 7/10
 - Bit manipulation problems using custom data type
 - Today’s bonus slides have helpful examples, tomorrow’s section will have helpful examples too
Gradescope Lab Turnin

- Make sure you pass the File and Compilation Check!

- Doesn’t indicate if you passed all tests, just indicates that all the correct files were found and there were no compilation or runtime errors.

- Use the testing programs we provide to check your solution for correctness (on attu or the VM)
Quick Aside: C Macros

- Lab1b will have you use some C macros for bit masks
- Syntax is of the form:
  ```c
  #define NAME expression
  ```
- Can now use "NAME" instead of "expression" in code
- Useful to help with readability/factoring in code
 - Especially useful for defining constants such as bit masks!
- Are NOT exactly the same as a constant in Java
 - Does naïve copy and replace before compilation.
 - Everywhere the characters "NAME" appear in the code, the characters "expression" will now appear instead.
- See Lecture 4 (Integers I) slides for example usages
Integers

- Binary representation of integers
 - Unsigned and signed
- Shifting and arithmetic operations – useful for Lab 1a
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware**: only one algorithm for addition
 - **Algorithm**: simple addition, discard the highest carry bit
 - Called modular addition: result is sum $\text{modulo } 2^w$

4-bit Examples:

<table>
<thead>
<tr>
<th>HW</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>+0011</td>
<td>+3</td>
</tr>
<tr>
<td>= 0111</td>
<td>+7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HW</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>+0011</td>
<td>+3</td>
</tr>
<tr>
<td>= 1111</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HW</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100</td>
<td>+4</td>
</tr>
<tr>
<td>+1101</td>
<td>-3</td>
</tr>
<tr>
<td>=1000</td>
<td>+1</td>
</tr>
</tbody>
</table>
Why Does Two’s Complement Work?

- For all representable positive integers \(x \), we want:
 \[
 \begin{align*}
 \text{bit representation of } x + \text{bit representation of } -x + 0 &= 00000000 \\
 \text{bit representation of } x + \text{bit representation of } -x + 0 &= 00000000 \\
 \text{bit representation of } x + \text{bit representation of } -x + 0 &= 00000000
 \end{align*}
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 00000001 + ???????? &= 00000000 \\
 00000010 + ???????? &= 00000000 \\
 11000011 + ???????? &= 00000000
 \end{align*}
 \]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

 $$\text{bit representation of } x + \text{bit representation of } -x = 0 \quad (\text{ignoring the carry-out bit})$$

 $$\begin{align*}
 x + (\sim x) &= \cdots 11111111 \\
 x + (\sim x + 1) &= 0
 \end{align*}$$

- What are the 8-bit negative encodings for the following?

 \[
 \begin{array}{ccc}
 00000001 & 00000010 & 11000011 \\
 + 11111111 & + 11111110 & + 00111101 \\
 \hline
 100000000 & 100000000 & 100000000
 \end{array}
 \]

 These are the bitwise complement plus 1!

 $$-x = \sim x + 1$$
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

\[\begin{align*}
2^{w-1} - 1 & \geq 0b00\ldots11 \\
2^{w-1} & \geq 0b11\ldots11
\end{align*} \]

\[\begin{align*}
2^{w-1} & \leq 0b10\ldots00
\end{align*} \]

\[\begin{align*}
-2^{w-1} & \geq 0b10\ldots00
\end{align*} \]

\[\begin{align*}
-2^{w-1} & \geq 0b10\ldots00
\end{align*} \]

\[\begin{align*}
0/\text{UMin} & \quad \text{0/UMin}
\end{align*} \]

\[\begin{align*}
\text{UMax} & = 0b11\ldots11 = 2^w - 1 \\
\text{UMax} - 1 & \quad \text{UMax - 1}
\end{align*} \]

\[\begin{align*}
\text{TMax} & \quad \text{TMax}
\end{align*} \]

\[\begin{align*}
\text{TMin} & \quad \text{TMin}
\end{align*} \]

\[\begin{align*}
\text{Unsigned Range} & \quad 2^{w-1}
\end{align*} \]
Values To Remember

- **Unsigned Values**
 - UMin = 0b00...0 = 0
 - UMax = 0b11...1 = 2^w - 1

- **Two’s Complement Values**
 - Tmin = 0b10...0 = \(-2^{w-1}\)
 - Tmax = 0b01...1 = 2^{w-1} - 1
 - -1 = 0b11...1

- **Example: Values for w = 64**

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
- Shifting and arithmetic operations – useful for Lab 1a
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension
In C: Signed vs. Unsigned

- **Casting**
 - Bits are unchanged, just interpreted differently!
 - `int` tx, ty;
 - `unsigned int` ux, uy;
 - *Explicit* casting
 - `tx = (int) ux;`
 - `uy = (unsigned int) ty;`
 - *Implicit* casting can occur during assignments or function calls
 - `tx = ux;`
 - `uy = ty;`
Casting Surprises

- **Integer literals (constants)**
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: 0U, 4294967259u

- **Expression Evaluation**
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators <, >, ==, <=, >=
Casting Surprises

- **32-bit examples:**
 - Tmin = -2,147,483,648, Tmax = 2,147,483,647

<table>
<thead>
<tr>
<th>Left Constant</th>
<th>Order</th>
<th>Right Constant</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><=</td>
<td>0U</td>
<td>unsigned</td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td><</td>
<td>0</td>
<td>signed</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>></td>
<td>0U</td>
<td>unsigned</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td>></td>
<td>-2147483648</td>
<td>signed</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>2147483647U</td>
<td><</td>
<td>-2147483648</td>
<td>unsigned</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>></td>
<td>-2</td>
<td>signed</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>1111 1111 1111 1111 1111 1111 1111 1110</td>
<td></td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>></td>
<td>-2</td>
<td>unsigned</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>1111 1111 1111 1111 1111 1111 1111 1110</td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td><</td>
<td>2147483648U</td>
<td>unsigned</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td>></td>
<td>(int) 2147483648U</td>
<td>signed</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td></td>
<td>1000 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
- Shifting and arithmetic operations – useful for Lab 1a
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

C and Java ignore overflow exceptions
- You end up with a bad value in your program and no warning/indication... oops!
Overflow: Unsigned

- **Addition**: drop carry bit \((-2^N)\)

 \[
 \begin{array}{c}
 15 \\
 + 2 \\
 \hline
 17 \\
 \end{array}
 \begin{array}{c}
 1111 \\
 + 0010 \\
 \hline
 10001 \\
 \end{array}
 \]

- **Subtraction**: borrow \((+2^N)\)

 \[
 \begin{array}{c}
 1 \\
 - 2 \\
 \hline
 -1 \\
 \end{array}
 \begin{array}{c}
 10001 \\
 - 0010 \\
 \hline
 1111 \\
 \end{array}
 \]

\(\pm 2^N\) because of modular arithmetic
Overflow: Two’s Complement

- **Addition:** $(+) + (+) = (-)$ result?

 \[
 \begin{array}{c}
 6 \\
 + 3 \\
 \hline
 \text{9} \\
 \end{array}
 \quad +
 \begin{array}{c}
 0110 \\
 + 0011 \\
 \hline
 1001 \\
 \end{array}

 -7

- **Subtraction:** $(-) + (-) = (+)$?

 \[
 \begin{array}{c}
 -7 \\
 - 3 \\
 \hline
 -10 \\
 \end{array}
 \quad +
 \begin{array}{c}
 1001 \\
 - 0011 \\
 \hline
 0110 \\
 \end{array}

 6

For signed: overflow if operands have same sign and result’s sign is different
Sign Extension

- What happens if you convert a *signed* integral data type to a larger one?
 - *e.g.* char → short → int → long

- **4-bit → 8-bit Example:**
 - Positive Case
 - 4-bit: 0010 = +2
 - 8-bit: 00000010 = +2
 - Negative Case?
Polling Question [Int II - a]

- Which of the following 8-bit numbers has the same signed value as the 4-bit number 0b1100?
 - Underlined digit = MSB
 - Vote at http://pollev.com/pbjones

A. 0b 0000 1100
B. 0b 1000 1100
C. 0b 1111 1100
D. 0b 1100 1100
E. We’re lost…
Sign Extension

- **Task:** Given a \(w \)-bit signed integer \(X \), convert it to \(w+k \)-bit signed integer \(X' \) *with the same value*

- **Rule:** Add \(k \) copies of sign bit
 - Let \(x_i \) be the \(i \)-th digit of \(X \) in binary
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0 \)

\begin{align*}
\text{original } X & \quad \downarrow \quad k \text{ copies of MSB} \\
X & \quad \downarrow \quad \cdots \quad \downarrow \quad \cdots \\
X' & \quad \downarrow \quad \cdots \quad \downarrow \quad \cdots
\end{align*}
Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```c
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Var</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 00111001</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 00111001</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Practice Question

For the following expressions, find a value of **signed char** x, if there exists one, that makes the expression **TRUE**. Compare with your neighbor(s)!

- Assume we are using 8-bit arithmetic:
 - x == (unsigned char) x
 - x >= 128U
 - x != (x>>2)<<2
 - x == -x
 - Hint: there are two solutions
 - (x < 128U) && (x > 0x3F)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Example</th>
<th>All solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>x == (unsigned char) x</td>
<td>x = 0</td>
<td>works for all x</td>
</tr>
<tr>
<td>x >= 128U</td>
<td>x = -1</td>
<td>any x < 0</td>
</tr>
<tr>
<td>x != (x>>2)<<2</td>
<td>x = 3</td>
<td>any x where lowest two bits are not 0b00</td>
</tr>
<tr>
<td>x == -x</td>
<td>x = 6</td>
<td>x = 0b0000..0100 ± 128</td>
</tr>
<tr>
<td>(x < 128U) && (x > 0x3F)</td>
<td>x = 128</td>
<td>any x where upper two bits are exactly 0b01</td>
</tr>
</tbody>
</table>
Aside: Unsigned Multiplication in C

Operands:
- \(w \) bits

\[
\begin{array}{c}
\text{True Product:} \\
2w \text{ bits}
\end{array}
\]

Discard \(w \) bits:
- \(w \) bits

\[
\begin{array}{c}
\text{UMult}_w(u, v)
\end{array}
\]

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Aside: Multiplication with shift and add

- **Operation** \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operand: (w) bits</th>
<th>True Product: (w + k) bits</th>
<th>Discard (k) bits: (w) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(u \cdot 2^k)</td>
<td>(\text{UMult}_w(u, 2^k))</td>
</tr>
<tr>
<td>(0 \cdots 010 \cdots 00)</td>
<td>(0 \cdots 00)</td>
<td>(\text{TMult}_w(u, 2^k))</td>
</tr>
</tbody>
</table>

- **Examples:**
 - \(u \ll 3 \) \(== u \times 8 \)
 - \(u \ll 5 - u \ll 3 \) \(== u \times 24 \)

- Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent so far?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
- It’s a 58-page standard...
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation: `xx.yyyy`

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?
Fractional Binary Numbers

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4: \(101.11_2\)
 - 2 and 7/8: \(10.111_2\)
 - 47/64: \(0.101111_2\)

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form \(0.111111\ldots_2\) are just below 1.0
 - \(1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0\)
 - Use notation \(1.0 - \varepsilon\)
Limits of Representation

- **Limitations:**
 - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x \times 2^y$ (y can be negative).
 - Other rational numbers have repeating bit representations.

Value: Binary Representation:

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3 = 0.33333..._{10}$</td>
<td>$0.01010101[01]..._2$</td>
</tr>
<tr>
<td>$1/5 = _1$</td>
<td>$0.001100110011[0011 _]..._2$</td>
</tr>
<tr>
<td>$1/10 = _1$</td>
<td>$0.0001100110011[0011 _]..._2$</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:

 #1: the binary point is between bits 2 and 3
 \[b_7 b_6 b_5 b_4 b_3 [.] b_2 b_1 b_0 \]

 #2: the binary point is between bits 4 and 5
 \[b_7 b_6 b_5 [.] b_4 b_3 b_2 b_1 b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed range and fixed precision

 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2×10^7 In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent
Scientific Notation (Decimal)

- **mantissa**
 - $6.02_{10} \times 10^{23}$
- **exponent**
- **decimal point**
- **radix (base)**

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- **Alternatives to representing $1/1,000,000,000$**
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the “floating” of the binary point
 - Declare such variable in C as float (or double)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$

- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

- **Practice:** Convert 11.375_{10} to normalized binary scientific notation

 $8 + 2 + 1 = 1.011_2$

 $0.25 + 0.125 = 0.011_2$

 1.011011×2^3
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just *interpreted* differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)

- We can only represent so many numbers in w bits
 - When we exceed the limits, *arithmetic overflow* occurs
 - *Sign extension* tries to preserve value when expanding

- Floating point approximates real numbers
 - We will discuss more details on Monday!
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1.

- Extract the 2nd most significant byte of an int
- Extract the sign bit of a signed int
- Conditionals as Boolean expressions
Using Shifts and Masks

- **Extract the 2nd most significant byte of an int:**
 - First shift, then mask: \((x\gg\!16) \& 0xFF\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\gg!16)</td>
<td>00000000 00000000 00000001 00000010</td>
</tr>
<tr>
<td>0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>((x\gg!16) & 0xFF)</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>

- Or first mask, then shift: \((x \& 0xFF0000) \gg\!16\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF0000</td>
<td>00000000 11111111 00000000 00000000</td>
</tr>
<tr>
<td>(x & 0xFF0000)</td>
<td>00000000 00000010 00000000 00000000</td>
</tr>
<tr>
<td>((x&0xFF0000) \gg!16)</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Extract the *sign bit* of a signed int:
 - First shift, then mask: \((x \gg 31) \& 0x1\)
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1's possibly shifted in

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x \gg 31) & 0x1)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>10000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x \gg 31) & 0x1)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Conditionals as Boolean expressions
 - For `int x`, what does `(x<<31)>>31` do?

<table>
<thead>
<tr>
<th>Condition</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x=!!123</code></td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td><code>x<<31</code></td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>(x<<31)>>31</code></td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td><code>!x</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>!x<<31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>(!!x<<31)>>31</code></td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if(x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=((x<<31)>>31)&y) | (((!!x<<31)>>31)&z);`