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Administrivia

❖ No lecture on Friday 7/3 (campus holiday)

❖ hw3 due Wednesday 7/1 – 10:30am

❖ hw4 due Monday 7/6 – 10:30am

▪ As a heads up, hw5 released 7/1, also due 7/6

❖ Lab 1a released

▪ Workflow:
1) Edit pointer.c

2) Run the Makefile (make) and check for compiler errors & warnings

3) Run ptest (./ptest) and check for correct behavior

4) Run rule/syntax checker (python dlc.py) and check output 

▪ Due Monday 7/6 at 11:59pm recommended to finish by 7/3 
(to give time to complete lab 1b).
• Lab 1b will be released later this week, due 7/10
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Lab Reflections

❖ All subsequent labs (after Lab 0) have a “reflection” 
portion

▪ The Reflection questions can be found on the lab specs and 
are intended to be done after you finish the lab

▪ You will type up your responses in a .txt file for 
submission on Gradescope

▪ These will be graded “by hand” (read by TAs)

❖ Intended to check your understand of what you 
should have learned from the lab
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Poll Everywhere For Credit

❖ Poll everywhere counts for credit starting today!

▪ Remember that you get credit for any answer, not just
correct answers.

▪ Make sure you enter a poll response before I close the poll.

❖ Makeup quizzes released after every lecture on 
Canvas.

▪ Only submit this if you did not answer in lecture.

▪ Must provide explanation for your answer to receive full
credit.

▪ Due before the next lecture at 10:30am.
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Memory, Data, and Addressing

❖ Representing information as bits and bytes

▪ Binary, hexadecimal, fixed-widths

❖ Organizing and addressing data in memory

▪ Memory is a byte-addressable array

▪ Machine “word” size = address size = register size

▪ Endianness – ordering bytes in memory

❖ Manipulating data in memory using C

▪ Assignment

▪ Pointers, pointer arithmetic, and arrays

❖ Boolean algebra and bit-level manipulations
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Boolean Algebra

❖ Developed by George Boole in 19th Century

▪ Algebraic representation of logic (True → 1, False → 0)

▪ AND: A&B=1 when both A is 1 and B is 1

▪ OR: A|B=1 when either A is 1 or B is 1

▪ XOR: A^B=1 when either A is 1 or B is 1, but not both

▪ NOT: ~A=1 when A is 0 and vice-versa

▪ DeMorgan’s Law: ~(A|B) = ~A & ~B

~(A&B) = ~A | ~B
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General Boolean Algebras

❖ Operate on bit vectors
▪ Operations applied bitwise

▪ All of the properties of Boolean algebra apply

❖ Examples of useful operations:

𝑥 ^𝑥 = 0

𝑥 | 1 = 1, 𝑥 | 0 = 𝑥
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01101001

& 01010101

01101001

| 01010101

01101001

^ 01010101 ~ 01010101

01010101

| 11110000

11110101

01010101

^ 01010101

00000000
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Bit-Level Operations in C

❖ & (AND), | (OR), ^ (XOR), ~ (NOT)

▪ View arguments as bit vectors, apply operations bitwise

▪ Apply to any “integral” data type
• long,  int,  short,  char,  unsigned

❖ Examples with char a, b, c;

▪ a = (char) 0x41; // 0x41->0b 0100 0001

b = ~a; //       0b          ->0x

▪ a = (char) 0x69; // 0x69->0b 0110 1001

b = (char) 0x55; // 0x55->0b 0101 0101

c = a & b; //       0b          ->0x  

▪ a = (char) 0x41; // 0x41->0b 0100 0001

b = a; //       0b 0100 0001

c = a ^ b; //       0b          ->0x
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Contrast:  Logic Operations

❖ Logical operators in C:  && (AND),  || (OR),  ! (NOT)

▪ 0 is False,  anything nonzero is True

▪ Always return 0 or 1

▪ Early termination (a.k.a. short-circuit evaluation) of &&, ||

❖ Examples (char data type)

▪ !0x41  ->  0x00

▪ !0x00  ->  0x01

▪ !!0x41 ->  0x01

▪ p && *p

• If p is the null pointer (0x0), then p is never dereferenced!
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▪ 0xCC && 0x33 -> 0x01

▪ 0x00 || 0x33 -> 0x01
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Roadmap
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car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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But before we get to integers….

❖ Encode a standard deck of playing cards

❖ 52 cards in 4 suits
▪ How do we encode suits, face cards?

❖ What operations do we want to make easy to implement?
▪ Which is the higher value card?

▪ Are they the same suit?
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Two possible representations

1) 1 bit per card (52):  bit corresponding to card set to 1

▪ “One-hot” encoding  (similar to set notation)

▪ Drawbacks:
• Hard to compare values and suits

• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13):  2 bits set

▪ Pair of one-hot encoded values

▪ Easier to compare suits and values, but still lots of bits used

12

low-order 52 bits of 64-bit word

4 suits 13 numbers
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Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed

▪ 26 = 64 ≥ 52

▪ Fits in one byte (smaller than one-hot encodings)

▪ How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value 
(4 bits)

▪ Also fits in one byte, and easy to do comparisons
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low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11

K Q J .  .  . 3 2 A

1101 1100 1011 ... 0011 0010 0001
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Compare Card Suits

char hand[5];       // represents a 5-card hand

char card1, card2;  // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if ( sameSuitP(card1, card2) ) { ... }
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SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired 
behavior when used with a bitwise operator on 
another bit vector v.  
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK  0x30

int sameSuitP(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent
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Compare Card Suits
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#define SUIT_MASK  0x30

int sameSuitP(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎&

=

^

!

=

&

mask: a bit vector designed to achieve a desired 
behavior when used with a bitwise operator on 
another bit vector v.  
Here we turn all but the bits of interest in v to 0.
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Compare Card Values

16

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK  0x0F

int greaterValue(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

char hand[5];       // represents a 5-card hand

char card1, card2;  // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if ( greaterValue(card1, card2) ) { ... }

mask: a bit vector designed to achieve a 
desired behavior when used with a 
bitwise operator on another bit vector v.
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Compare Card Values

17

#define VALUE_MASK  0x0F

int greaterValue(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

==

210 > 1310

0 (false)

mask: a bit vector designed to achieve a 
desired behavior when used with a 
bitwise operator on another bit vector v.
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Integers

❖ Binary representation of integers

▪ Unsigned and signed

❖ Shifting and arithmetic operations – useful for Lab 1a

❖ In C: Signed, Unsigned and Casting 

❖ Consequences of finite width representations

▪ Overflow, sign extension

18



CSE351, Summer 2020L04: Integers I

Encoding Integers

❖ The hardware (and C) supports two flavors of integers

▪ unsigned – only the non-negatives

▪ signed – both negatives and non-negatives

❖ Cannot represent all integers with 𝑤 bits

▪ Only 2𝑤 distinct bit patterns

▪ Unsigned values: 0 ... 2𝑤–1

▪ Signed values: −2𝑤−1 … 2𝑤−1–1

❖ Example: 8-bit integers (e.g. char)

19

0
-∞

+256+128−128
+𝟐𝟖+𝟐𝟖−𝟏−𝟐𝟖−𝟏

+∞

𝟎
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Unsigned Integers

❖ Unsigned values follow the standard base 2 system

▪ b7b6b5b4b3b2b1b0 = b72
7 + b62

6 +⋯+ b12
1 + b02

0

❖ Add and subtract using the normal “carry” and 
“borrow” rules, just in binary

❖ Useful formula:  2N−1 + 2N−2 + … + 2 + 1 = 2N − 1

▪ i.e. N ones in a row = 2N − 1

❖ How would you make signed integers?

20

00111111

+00001000

01000111

63

+ 8

71
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Sign and Magnitude

❖ Designate the high-order bit (MSB) as the “sign bit”
▪ sign=0:  positive numbers;  sign=1: negative numbers

❖ Benefits:

▪ Using MSB as sign bit matches positive numbers with 
unsigned

▪ All zeros encoding is still = 0

❖ Examples (8 bits): 

▪ 0x00 = 000000002 is non-negative, because the sign bit is 0

▪ 0x7F = 011111112 is non-negative (+12710)

▪ 0x85 = 100001012 is negative (-510)

▪ 0x80 = 100000002 is negative...

21

... zero???

Most Significant Bit
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Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks?
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0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned
Sign and 

Magnitude
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Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks:

▪ Two representations of 0  (bad for checking equality)
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0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

Sign and 
Magnitude
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Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks:

▪ Two representations of 0  (bad for checking equality)

▪ Arithmetic is cumbersome
• Example:  4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!
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0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

0100

+ 1011

1111

0100

- 0011

0001

4

- 3

1

✓

4

+ -3

-7

✗

Sign and 
Magnitude
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Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works 
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0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1

– 0
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Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works 

2) “Shift” negative numbers to eliminate –0

❖ MSB still indicates sign!

▪ This is why we represent one
more negative than positive
number (-2𝑁−1 to 2𝑁−1 −1)
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0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1
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Two’s Complement Negatives

❖ Accomplished with one neat mathematical trick!

▪ 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10

• 10102 two’s complement:
-1*23+0*22+1*21+0*20 = –6

▪ -1 represented as: 
11112 = -23+(23 – 1)
• MSB makes it super negative, add up 

all the other bits to get back up to -1
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bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement
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Why Two’s Complement is So Great

❖ Roughly same number of (+) and (–) numbers

❖ Positive number encodings match unsigned

❖ Single zero

❖ All zeros encoding = 0

❖ Simple negation procedure:

▪ Get negative representation 
of any integer by taking 
bitwise complement and 
then adding one!
( ~x + 1 == -x )
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0000

0001

0011

1111

1110

1100

1011
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1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement
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Polling Question [Int I - b]

❖ Take the 4-bit number encoding x = 0b1011

❖ Which of the following numbers is NOT a valid 
interpretation of x using any of the number 
representation schemes discussed today?

▪ Unsigned, Sign and Magnitude, Two’s Complement

▪ Vote at http://pollev.com/pbjones

A. -4

B. -5

C. 11

D. -3

E. We’re lost…
29

http://pollev.com/pbjones
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Integers

❖ Binary representation of integers

▪ Unsigned and signed

❖ Shifting and arithmetic operations – useful for Lab 1a

❖ In C: Signed, Unsigned and Casting 

❖ Consequences of finite width representations

▪ Overflow, sign extension
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Shift Operations

❖ Left shift (x<<n) bit vector x by n positions

▪ Throw away (drop) extra bits on left

▪ Fill with 0s on right

❖ Right shift (x>>n) bit-vector x by n positions

▪ Throw away (drop) extra bits on right

▪ Logical shift (for unsigned values)
• Fill with 0s on left

▪ Arithmetic shift (for signed values)
• Replicate most significant bit on left

• Maintains sign of x
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Shift Operations

❖ Left shift (x<<n)

▪ Fill with 0s on right

❖ Right shift (x>>n)

▪ Logical shift (for unsigned values)
• Fill with 0s on left

▪ Arithmetic shift (for signed values)
• Replicate most significant bit on left

❖ Notes:
▪ Shifts by n<0 or n≥w (w is bit width of x) are undefined

▪ In C: behavior of >> is determined by compiler
• In gcc / C lang, depends on data type of x (signed/unsigned)

▪ In Java: logical shift is >>> and arithmetic shift is >>
32

x 0010 0010

x<<3 0001 0000

logical: x>>2 0000 1000

arithmetic: x>>2 0000 1000

x 1010 0010

x<<3 0001 0000

logical: x>>2 0010 1000

arithmetic: x>>2 1110 1000
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Shifting Arithmetic?

❖ What are the following computing?

▪ x>>n

• 0b 0100 >> 1 = 0b 0010

• 0b 0100 >> 2 = 0b 0001

• Divide by 2n

▪ x<<n

• 0b 0001 << 1 = 0b 0010

• 0b 0001 << 2 = 0b 0100

• Multiply by 2n

❖ Shifting is faster than general multiply and divide 
operations

33
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Left Shifting Arithmetic 8-bit Example

❖ No difference in left shift operation for unsigned and 
signed numbers (just manipulates bits)
▪ Difference comes during interpretation: x*2n?

34

x = 25;      00011001 =

L1=x<<2;   0001100100 =

L2=x<<3;  00011001000 =

L3=x<<4; 000110010000 = 

25   25

100  100

-56  200

-112  144 

Signed    Unsigned

signed overflow

unsigned overflow

signed overflow
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Right Shifting Arithmetic 8-bit Examples

❖ Reminder: C operator >> does logical shift on 
unsigned values and arithmetic shift on signed values
▪ Logical Shift:  x/2n?

35

xu = 240u; 11110000      =

R1u=xu>>3; 00011110000  =

R2u=xu>>5; 0000011110000 =

240

30

7

rounding (down)
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Right Shifting Arithmetic 8-bit Examples

❖ Reminder: C operator >> does logical shift on 
unsigned values and arithmetic shift on signed values
▪ Arithmetic Shift:  x/2n?

36

xs = -16;  11110000      =

R1s=xu>>3; 11111110000  =

R2s=xu>>5; 1111111110000 =

-16

-2

-1

rounding (down)
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Summary

❖ Bit-level operators allow for fine-grained manipulations of 
data
▪ Bitwise AND (&), OR (|), and NOT (~) different than logical AND 

(&&), OR (||), and NOT (!)
▪ Especially useful with bit masks

❖ Choice of encoding scheme is important
▪ Tradeoffs based on size requirements and desired operations

❖ Integers represented using unsigned and two’s 
complement representations
▪ Limited by fixed bit width
▪ We’ll examine arithmetic operations next lecture

❖ Shifting is a useful bitwise operator
▪ Right shifting can be arithmetic (sign) or logical (0)
▪ Can be used in multiplication with constant or bit masking
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