Integers I
CSE 351 Summer 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu
Callum Walker
Sam Wolfson
Tim Mandzyuk

http://xkcd.com/257/
Administrivia

❖ No lecture on Friday 7/3 (campus holiday)
❖ hw3 due Wednesday 7/1 – 10:30am
❖ hw4 due Monday 7/6 – 10:30am
 ▪ As a heads up, hw5 released 7/1, also due 7/6
❖ Lab 1a released
 ▪ Workflow:
 1) Edit pointer.c
 2) Run the Makefile (make) and check for compiler errors & warnings
 3) Run ptest (. /ptest) and check for correct behavior
 4) Run rule/syntax checker (python dlc.py) and check output
 ▪ Due Monday 7/6 at 11:59pm recommended to finish by 7/3
 (to give time to complete lab 1b).
 • Lab 1b will be released later this week, due 7/10
Lab Reflections

❖ All subsequent labs (after Lab 0) have a “reflection” portion
 ▪ The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
 ▪ You will type up your responses in a .txt file for submission on Gradescope
 ▪ These will be graded “by hand” (read by TAs)

❖ Intended to check your understand of what you should have learned from the lab
Poll Everywhere For Credit

❖ Poll everywhere counts for credit starting today!
 ▪ Remember that you get credit for any answer, not just correct answers.
 ▪ Make sure you enter a poll response before I close the poll.

❖ Makeup quizzes released after every lecture on Canvas.
 ▪ Only submit this if you did not answer in lecture.
 ▪ Must provide explanation for your answer to receive full credit.
 ▪ Due before the next lecture at 10:30am.
Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths
- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine “word” size = address size = register size
 - Endianness – ordering bytes in memory
- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays
- Boolean algebra and bit-level manipulations
Boolean Algebra

❖ Developed by George Boole in 19th Century
 ▪ Algebraic representation of logic (True \rightarrow 1, False \rightarrow 0)
 ▪ AND: $A \& B = 1$ when both A is 1 and B is 1
 ▪ OR: $A \mid B = 1$ when either A is 1 or B is 1
 ▪ XOR: $A ^ B = 1$ when either A is 1 or B is 1, but not both
 ▪ NOT: $\overline{A} = 1$ when A is 0 and vice-versa
 ▪ DeMorgan’s Law: $\overline{A \mid B} = \overline{A} \& \overline{B}$
 $\overline{A \& B} = \overline{A} \mid \overline{B}$

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$&$</td>
<td>\mid</td>
<td>$^\wedge$</td>
<td>\sim</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
General Boolean Algebras

❖ Operate on bit vectors
 ▪ Operations applied bitwise
 ▪ All of the properties of Boolean algebra apply

\[
\begin{align*}
01101001 & \quad 01101001 & \quad 01101001 \\
& \quad 01010101 & \quad 01010101 & \quad ^\wedge 01010101 & \quad \sim 01010101
\end{align*}
\]

❖ Examples of useful operations:

\[
\begin{align*}
x \wedge x &= 0 \\
\text{“sets to 1”} & \quad \text{“leaves as is”}
\end{align*}
\]

\[
\begin{align*}
x \mid 1 &= 1, & x \mid 0 &= x \\
0 \mid 1 &= 1 & 0 \mid 0 &= 0 \\
1 \mid 1 &= 1 & 1 \mid 0 &= 1
\end{align*}
\]
Bit-Level Operations in C

❖ & (AND), | (OR), ^ (XOR), ~ (NOT)

▪ View arguments as bit vectors, apply operations bitwise
▪ Apply to any “integral” data type
 • long, int, short, char, unsigned

❖ Examples with char a, b, c;

▪ a = (char) 0x41; // 0x41→0b 0100 0001
 b = ~a; // 0b ->0x

▪ a = (char) 0x69; // 0x69→0b 0110 1001
 b = (char) 0x55; // 0x55→0b 0101 0101
 c = a & b; // 0b ->0x

▪ a = (char) 0x41; // 0x41→0b 0100 0001
 b = a; // 0b 0100 0001
 c = a ^ b; // 0b ->0x
Contrast: Logic Operations

❖ Logical operators in C: `&&` (AND), `||` (OR), `!` (NOT)
 ▪ 0 is False, anything nonzero is True
 ▪ Always return 0 or 1
 ▪ Early termination (a.k.a. short-circuit evaluation) of `&&`, `||`

❖ Examples (`char` data type)
 ▪ `!0x41` -> `0x00`
 ▪ `!0x00` -> `0x01`
 ▪ `!!0x41` -> `0x01`
 ▪ `p && *p`
 • If `p` is the null pointer (0x0), then `p` is never dereferenced!
Roadmap

C:
```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:
```
get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret
```

Machine code:
```
0111010000011000
100011010000010000000010
1000100111000010
1100000111111010100001111
```

Computer system:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

OS:

Windows 10

OS X Yosemite
But before we get to integers....

❖ Encode a standard deck of playing cards
❖ 52 cards in 4 suits
 ▪ How do we encode suits, face cards?
❖ What operations do we want to make easy to implement?
 ▪ Which is the higher value card?
 ▪ Are they the same suit?
Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

- "One-hot" encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

\[\frac{52 \text{ bits}}{7 \text{ bytes}} = \frac{52}{7} = 7.42857 \text{ bits/byte} \]

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values
- Easier to compare suits and values, but still lots of bits used
Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed
 - $2^6 = 64 \geq 52$
 - Fits in one byte (smaller than one-hot encodings)
 - How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

<table>
<thead>
<tr>
<th>Suit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
<td>11</td>
</tr>
<tr>
<td>♥</td>
<td>10</td>
</tr>
<tr>
<td>♦</td>
<td>01</td>
</tr>
<tr>
<td>♣</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>Q</th>
<th>J</th>
<th>...</th>
<th>3</th>
<th>2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>...</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
</tbody>
</table>
Compare Card **Suits**

```c
char hand[5]; // represents a 5-card hand
cchar card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( sameSuitP(card1, card2) ) { ... }
```

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
Here we turn all *but* the bits of interest in v to 0.

SUIT_MASK = 0x30 = 00110000

<table>
<thead>
<tr>
<th>suit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>keep</td>
<td>discard</td>
</tr>
</tbody>
</table>
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
Here we turn all but the bits of interest in v to 0.

!(x^y) equivalent to x==y
Compare Card **Values**

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

`VALUE_MASK = 0x0F = \begin{array}{c|c}
\hline
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
\hline
\end{array}`
Compare Card **Values**

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

- **mask**: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v \).

```
0 0 1 0 0 0 1 0
&
0 0 0 0 1 1 1 1
=
0 0 0 0 0 0 1 0

0 0 1 0 1 1 0 1
&
0 0 0 0 1 1 1 1
=
0 0 0 0 0 1 1 0 1
```

\[2_{10} > 13_{10} \]

0 (false)
Integers

❖ Binary representation of integers
 ▪ Unsigned and signed

❖ Shifting and arithmetic operations – useful for Lab 1a

❖ In C: Signed, Unsigned and Casting

❖ Consequences of finite width representations
 ▪ Overflow, sign extension
Encoding Integers

- The hardware (and C) supports two flavors of integers
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \ldots 2^w-1$
 - Signed values: $-2^{w-1} \ldots 2^{w-1}-1$

- Example: 8-bit integers (*e.g.* `char`)
Unsigned Integers

- Unsigned values follow the standard base 2 system
 \[b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \ldots + b_12^1 + b_02^0 \]

- Add and subtract using the normal “carry” and “borrow” rules, just in binary

\[
\begin{array}{c}
63 \\
+ 8 \\
\hline
71
\end{array} \quad \begin{array}{c}
00111111 \\
+00001000 \\
\hline
01000111
\end{array}
\]

- Useful formula: \[2^{N-1} + 2^{N-2} + \ldots + 2 + 1 = 2^N - 1 \]
 \[i.e. \text{ N ones in a row} = 2^N - 1 \]

- How would you make signed integers?
Sign and Magnitude

❖ Designate the high-order bit (MSB) as the “sign bit”
 - \(\text{sign} = 0 \): positive numbers; \(\text{sign} = 1 \): negative numbers

❖ Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned
 - All zeros encoding is still = 0

❖ Examples (8 bits):
 - \(0x00 = \text{00000000}_2 \) is non-negative, because the sign bit is 0
 - \(0x7F = \text{01111111}_2 \) is non-negative \((+127_{10})\)
 - \(0x85 = \text{10000101}_2 \) is negative \((-5_{10})\)
 - \(0x80 = \text{10000000}_2 \) is negative... zero???
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?
Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude
❖ Drawbacks:
 ▪ Two representations of 0 (bad for checking equality)
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: $4 - 3 \neq 4 + (-3)$

- Negatives “increment” in wrong direction!
Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
 2) “Shift” negative numbers to eliminate −0

- MSB still indicates sign!
 - This is why we represent one more negative than positive number (-2^{N-1} to 2^{N-1} − 1)
Two’s Complement Negatives

❖ Accomplished with one neat mathematical trick!

- b_{w-1} has weight -2^{w-1}, other bits have usual weights $+2^i$

4-bit Examples:

- 1010_2 unsigned:
 \[1\times 2^3 + 0\times 2^2 + 1\times 2^1 + 0\times 2^0 = 10\]

- 1010_2 two’s complement:
 \[-1\times 2^3 + 0\times 2^2 + 1\times 2^1 + 0\times 2^0 = -6\]

-1 represented as:

- $1111_2 = -2^3 + (2^3 - 1)$

- MSB makes it super negative, add up all the other bits to get back up to -1
Why Two’s Complement is So Great

❖ Roughly same number of (+) and (−) numbers
❖ Positive number encodings match unsigned
❖ Single zero
❖ All zeros encoding = 0

❖ Simple negation procedure:
 ▪ Get negative representation of any integer by taking bitwise complement and then adding one!
 \((\sim x + 1 == -x)\)
Polling Question [Int I - b]

- Take the 4-bit number encoding \(x = 0b1011 \)
- Which of the following numbers is NOT a valid interpretation of \(x \) using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two’s Complement
 - Vote at http://pollev.com/pbjones

A. -4
B. -5
C. 11
D. -3
E. We’re lost...
Integers

- Binary representation of integers
 - Unsigned and signed
- **Shifting and arithmetic operations** – useful for Lab 1a
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension
Shift Operations

- **Left shift** \((x<<n)\) bit vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on left
 - Fill with 0s on right

- **Right shift** \((x>>n)\) bit-vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on right
 - Logical shift (for **unsigned** values)
 - Fill with 0s on left
 - Arithmetic shift (for **signed** values)
 - Replicate most significant bit on left
 - Maintains sign of \(x\)
Shift Operations

❖ Left shift \((x << n)\)
 ▪ Fill with 0s on right

❖ Right shift \((x >> n)\)
 ▪ Logical shift (for unsigned values)
 • Fill with 0s on left
 ▪ Arithmetic shift (for signed values)
 • Replicate most significant bit on left

❖ Notes:
 ▪ Shifts by \(n < 0\) or \(n \geq w\) (\(w\) is bit width of \(x\)) are undefined
 ▪ In C: behavior of >> is determined by compiler
 • In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
 ▪ In Java: logical shift is >>> and arithmetic shift is >>
Shifting Arithmetic?

❖ What are the following computing?

▪ x>>>n
 • 0b 0100 >>> 1 = 0b 0010
 • 0b 0100 >>> 2 = 0b 0001
 • **Divide by 2**^n

▪ x<<n
 • 0b 0001 << 1 = 0b 0010
 • 0b 0001 << 2 = 0b 0100
 • **Multiply by 2**^n

❖ Shifting is faster than general multiply and divide operations
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: $x \times 2^n$?

$x = 25;$

$\begin{align*}
\text{Signed} & \quad \text{Unsigned} \\
L_1 = x << 2; & \quad 0001100100 & = & \quad 100 & \quad 100 \\
L_2 = x << 3; & \quad 000110010000 & = & \quad -56 & \quad 200 \\
L_3 = x << 4; & \quad 00011001000000 & = & \quad -112 & \quad 144
\end{align*}$
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - **Logical Shift:** \(x / 2^n \)?

\[
x_u = 240u; \quad 11110000 \quad = \quad 240
\]
\[
R1_u = x_u >> 3; \quad 00011110000 \quad = \quad 30
\]
\[
R2_u = x_u >> 5; \quad 0000011110000 \quad = \quad 7
\]

rounding (down)
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values

- **Arithmetic Shift:** $x / 2^n$?

$x_s = -16; \quad 11110000 = -16$

$R_{ls}=x_u>>3; \quad 111111110000 = -2$

$R_{2s}=x_u>>5; \quad 11111111110000 = -1$

- rounding (down)
Summary

❖ Bit-level operators allow for fine-grained manipulations of data
 ▪ Bitwise AND (&), OR (|), and NOT (~) different than logical AND (&&), OR (||), and NOT (!)
 ▪ Especially useful with bit masks

❖ Choice of *encoding scheme* is important
 ▪ Tradeoffs based on size requirements and desired operations

❖ Integers represented using unsigned and two’s complement representations
 ▪ Limited by fixed bit width
 ▪ We’ll examine arithmetic operations next lecture

❖ Shifting is a useful bitwise operator
 ▪ Right shifting can be arithmetic (sign) or logical (0)
 ▪ Can be used in multiplication with constant or bit masking