
CSE351, Summer 2020L03:  Memory & Data II

Memory, Data, & Addressing II
CSE 351 Spring 2020

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu
Callum Walker
Sam Wolfson
Tim Mandzyuk

http://xkcd.com/138/

http://xkcd.com/138/


CSE351, Summer 2020L03:  Memory & Data II

Administrivia

❖ Questions doc for today: https://tinyurl.com/CSE351-6-26

❖ Assignments Overview

❖ Lab 0 due Tonight (6/26) – 11:59pm 

❖ hw2 due Monday (6/29) – 10:30am

❖ hw3 due Wednesday (7/1) – 10:30am

❖ Lab 1a released today, due a week from Monday (7/6)
▪ Suggested Due Date is 7/3 to give time for lab1b (due 7/10)

▪ Pointers in C

▪ Reminder:  last submission graded, individual work

❖ Study group survey results released today!

▪ Can still fill out the survey if interested in finding a group
2

https://tinyurl.com/CSE351-6-26


CSE351, Summer 2020L03:  Memory & Data II

Late Days
❖ You are given 7 late days for the whole quarter

▪ Late days can only apply to Labs & Unit Summaries

▪ No benefit to having leftover late days

❖ Count lateness in days (even if just by a second)

▪ Special:  weekends count as one day

▪ No submissions accepted more than two days late

❖ The late penalty for using more than 7 late days is a 
20% deduction of your score per excess day

▪ Only late work is eligible for penalties

▪ Penalties applied at end of quarter to maximize your grade

❖ Use at own risk – don’t want to fall too far behind

▪ Intended to allow for unexpected circumstances
3



CSE351, Summer 2020L03:  Memory & Data II

Where We Left Off: Byte Ordering

❖ Big-endian (SPARC, z/Architecture)

▪ Least significant byte has highest address

❖ Little-endian (x86, x86-64)

▪ Least significant byte has lowest address

❖ Bi-endian (ARM, PowerPC)

▪ Endianness can be specified as big or little

❖ Example: 4-byte data 0xa1b2c3d4 at address 0x100

4

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1



CSE351, Summer 2020L03:  Memory & Data II

Byte Ordering Examples

5

Decimal: 12345
Binary:  0011 0000 0011 1001

Hex: 3 0 3 9

39

30

00

00

IA32, x86-64
(little-endian)

00

00

00

00

39
30
00
00

64-bit
x86-64

39
30
00
00

32-bit
IA32

30

39

00

00

SPARC
(big-endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00

00

00

00

int x = 12345;

// or x = 0x3039;

long int y = 12345;

// or y = 0x3039;

(A long int is 
the size of a word)

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07



CSE351, Summer 2020L03:  Memory & Data II

Polling Question

❖ We store the value 0x 01 02 03 04 as a word at 
address 0x100 in a big-endian, 64-bit machine

❖ What is the byte of data stored at address 0x104?

▪ Vote at http://pollev.com/pbjones

A. 0x04

B. 0x40

C. 0x01

D. 0x10

E. We’re lost…

6

http://pollev.com/pbjones


CSE351, Summer 2020L03:  Memory & Data II

Endianness

❖ Endianness only applies to memory storage

❖ Often programmer can ignore endianness because it 
is handled for you

▪ Bytes wired into correct place when reading or storing from 
memory (hardware)

▪ Compiler and assembler generate correct behavior (software)

❖ Endianness still shows up:

▪ Logical issues:  accessing different amount of data than how 
you stored it (e.g. store int, access byte as a char)

▪ Need to know exact values to debug memory errors

▪ Manual translation to and from machine code (in 351)

7



CSE351, Summer 2020L03:  Memory & Data II

Memory, Data, and Addressing

❖ Representing information as bits and bytes

▪ Binary, hexadecimal, fixed-widths

❖ Organizing and addressing data in memory

▪ Memory is a byte-addressable array

▪ Machine “word” size = address size = register size

▪ Endianness – ordering bytes in memory

❖ Manipulating data in memory using C

▪ Assignment

▪ Pointers, pointer arithmetic, and arrays

❖ Boolean algebra and bit-level manipulations

8



CSE351, Summer 2020L03:  Memory & Data II

Addresses and Pointers in C

❖ & = “address of” operator

❖ * = “value at address” or “dereference” operator

int* ptr;

int x = 5;

int y = 2;

ptr = &x;

y = 1 + *ptr;

9

Declares a variable, ptr, that is a pointer to 
(i.e. holds the address of) an int in memory

Declares two variables, x and y, that hold ints, 
and initializes them to 5 and 2, respectively

Sets ptr to the address of x
(“ptr points to x”)

Sets y to “1 plus the value stored at the 
address held by ptr.”  Because ptr
points to x, this is equivalent to y=1+x;“Dereference ptr”

What is *(&y) ?

* is also used with 
variable declarations



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ A variable is represented by a location

❖ Declaration ≠ initialization (initially holds “garbage”)

❖ int x, y;

▪ x is at address 0x04, y is at 0x18

10

x

y

0x00 0x01 0x02 0x03

A7 00 32 00
00 01 29 F3
EE EE EE EE
FA CE CA FE
26 00 00 00
00 00 10 00

01 00 00 00
FF 00 F4 96
DE AD BE EF
00 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ A variable is represented by a location

❖ Declaration ≠ initialization (initially holds “garbage”)

❖ int x, y;

▪ x is at address 0x04, y is at 0x18

11

x

y

0x00 0x01 0x02 0x03

00 01 29 F3

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ left-hand side = right-hand side;
▪ LHS must evaluate to a location
▪ RHS must evaluate to a value (could be an address)
▪ Store RHS value at LHS location

❖ int x, y;

❖ x = 0; 

12

00 01 29 F300 00 00 00 x

y

0x00 0x01 0x02 0x03

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ left-hand side = right-hand side;
▪ LHS must evaluate to a location
▪ RHS must evaluate to a value (could be an address)
▪ Store RHS value at LHS location

❖ int x, y;

❖ x = 0;

❖ y = 0x3CD02700;

13

00 00 00 00

01 00 00 0000 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

little endian!

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ left-hand side = right-hand side;
▪ LHS must evaluate to a location
▪ RHS must evaluate to a value (could be an address)
▪ Store RHS value at LHS location

❖ int x, y;

❖ x = 0;

❖ y = 0x3CD02700;

❖ x = y + 3;

▪ Get value at y, add 3, store in x

14

00 00 00 00

00 27 D0 3C

03 27 D0 3C x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ left-hand side = right-hand side;
▪ LHS must evaluate to a location
▪ RHS must evaluate to a value (could be an address)
▪ Store RHS value at LHS location

❖ int x, y;

❖ x = 0;

❖ y = 0x3CD02700;

❖ x = y + 3;

▪ Get value at y, add 3, store in x

❖ int* z;

▪ z is at address 0x20

15

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

zFE ED AB BA

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ left-hand side = right-hand side;
▪ LHS must evaluate to a location
▪ RHS must evaluate to a value (could be an address)
▪ Store RHS value at LHS location

❖ int x, y;

❖ x = 0;

❖ y = 0x3CD02700;

❖ x = y + 3;

▪ Get value at y, add 3, store in x

❖ int* z = &y + 3;

▪ Get address of y, “add 3”, store in z

16

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

Pointer arithmetic

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Pointer Arithmetic

❖ Pointer arithmetic is scaled by the size of target type
▪ In this example, sizeof(int) = 4

❖ int* z = &y + 3;

▪ Get address of y, add 3*sizeof(int), store in z

▪ &y = 0x18

▪ 24 + 3*(4) = 36

❖ Pointer arithmetic can be dangerous!

▪ Can easily lead to bad memory accesses

▪ Be careful with data types and casting

17

= 1*161 + 8*160 = 24

= 2*161 + 4*160 = 0x24



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ int x, y;

❖ x = 0;

❖ y = 0x3CD02700;

❖ x = y + 3;

▪ Get value at y, add 3, store in x

❖ int* z = &y + 3;

▪ Get address of y, add 12, store in z

❖ *z = y;

▪ What does this do?

18

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Assignment in C

❖ int x, y;

❖ x = 0;

❖ y = 0x3CD02700;

❖ x = y + 3;

▪ Get value at y, add 3, store in x

❖ int* z = &y + 3;

▪ Get address of y, add 12, store in z

❖ *z = y;

▪ Get value of y, put in address 
stored in z

19

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00
00 27 D0 3C

The target of a pointer 
is also a location

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Arrays in C

Declaration: int a[6];

20

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

a (array name) returns the array’s address

Arrays are adjacent locations in memory 
storing the same type of data object

element type

name
number of
elements

a[1]

a[3]

a[5]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

64-bit example
(pointers are 64-bits wide)



CSE351, Summer 2020L03:  Memory & Data II

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

21

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

&a[i] is the address of a[0] plus i times 
the element size in bytes

Arrays are adjacent locations in memory 
storing the same type of data object

a (array name) returns the array’s address



CSE351, Summer 2020L03:  Memory & Data II

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

22

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

00000BAD

00000BAD

&a[i] is the address of a[0] plus i times 
the element size in bytes

Arrays are adjacent locations in memory 
storing the same type of data object

a (array name) returns the array’s address



CSE351, Summer 2020L03:  Memory & Data II

0000015F

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

*p = 0xA;

23

0000000A

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

&a[i] is the address of a[0] plus i times 
the element size in bytes

Arrays are adjacent locations in memory 
storing the same type of data object

a (array name) returns the array’s address



CSE351, Summer 2020L03:  Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

0000015F

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

*p = 0xA;

p[1] = 0xB;

*(p+1) = 0xB;

p = p + 2;

24

0000000A

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

equivalent

0000000B

&a[i] is the address of a[0] plus i times 
the element size in bytes

Arrays are adjacent locations in memory 
storing the same type of data object

a (array name) returns the array’s address



CSE351, Summer 2020L03:  Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

Arrays in C

Declaration: int a[6];

Indexing: a[0] = 0x015f;

a[5] = a[0];

No bounds a[6] = 0xBAD;

checking: a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

*p = 0xA;

p[1] = 0xB;

*(p+1) = 0xB;

p = p + 2;

*p = a[1] + 1;
25

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

equivalent

equivalent

0000000A

0000015F

00000BAD

00000BAD

00000018 00000000

0000000B

p

0000000C

&a[i] is the address of a[0] plus i times 
the element size in bytes

Arrays are adjacent locations in memory 
storing the same type of data object

a (array name) returns the array’s address



CSE351, Summer 2020L03:  Memory & Data II

Question:  The variable values after Line 3 executes are 
shown on the right.  What are they after Line 4 & 5?

▪ Vote at http://pollev.com/pbjones

26

1 void main() {

2 int a[] = {5,10};

3 int* p = a;

4 p =  p + 1;

5 *p = *p + 1;

6 }

101 10   5   10 then  101 11   5   11(A)

104 10   5   10 then  104 11   5   11(B)

100  6   6   10 then  101  6   6   10(C)

(D)

p *p a[0] a[1]then p *p a[0] a[1]

100a[0]

a[1]

p

5
10

100

...

Address
(decimal)

Data
(decimal)

http://pollev.com/pbjones


CSE351, Summer 2020L03:  Memory & Data II

Representing strings

❖ C-style string stored as an array of bytes (char*)

▪ Elements are one-byte ASCII codes for each character

▪ No “String” keyword, unlike Java

27

32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 x

41 ) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [ 107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93 ] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

ASCII: American Standard Code for Information Interchange



CSE351, Summer 2020L03:  Memory & Data II

Null-Terminated Strings

❖ Example: “Ice Creamery" stored as a 13-byte array

❖ Last character followed by a 0 byte ('\0') 
(a.k.a. "null terminator")

▪ Must take into account when allocating space in memory

▪ Note that '0' ≠ '\0' (i.e. character 0 has non-zero value)

❖ How do we compute the length of a string?

▪ Traverse array until null terminator encountered

28

Decimal:.. 73 99 101 32 67 114 101 97 109 101 114 121 0

Hex:.. 0x49 0x63 0x65 0x20 0x43 0x72 0x65 0x61 0x6d 0x65 0x72 0x79 0x00

Text:.. I c e C r e a m e r y \0



CSE351, Summer 2020L03:  Memory & Data II

char s[6] = "12345";

Endianness and Strings

❖ Byte ordering (endianness) is not an issue for 1-byte 
values
▪ The whole array does not constitute a single value

▪ Individual elements are values; chars are single bytes

29

C (char = 1 byte)

0x31 = 49 decimal = ASCII ‘1’ 33
34

31
32

35
00

33
34

31
32

35
00

0x00
0x01
0x02
0x03

0x04
0x05

0x00
0x01
0x02
0x03
0x04
0x05

'1'

'2'

'3'

'4'

'5'

'\0'

IA32, x86-64
(little-endian)

SPARC
(big-endian)

String literal



CSE351, Summer 2020L03:  Memory & Data II

void show_bytes(char* start, int len) {

int i;

for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n", start+i, *(start+i));

printf("\n");

}

Examining Data Representations

❖ Code to print byte representation of data
▪ Any data type can be treated as a byte array by casting it to char

▪ C has unchecked casts  !! DANGER !!

30

printf directives:
%p Print pointer
\t Tab
%x Print value as hex
\n New line



CSE351, Summer 2020L03:  Memory & Data II

Examining Data Representations

❖ Code to print byte representation of data
▪ Any data type can be treated as a byte array by casting it to char

▪ C has unchecked casts  !! DANGER !!

31

void show_bytes(char* start, int len) {

int i;

for (i = 0; i < len; i++)

printf("%p\t0x%.2x\n", start+i, *(start+i));

printf("\n");

}

void show_int(int x) {

show_bytes( (char *) &x, sizeof(int));

}



CSE351, Summer 2020L03:  Memory & Data II

show_bytes Execution Example

❖ Result (Linux x86-64):

▪ Note: The addresses will change on each run (try it!), but 
fall in same general range

32

int x = 12345; // 0x00003039

printf("int x = %d;\n", x);

show_int(x);   // show_bytes((char *) &x, sizeof(int));

int x = 12345;   

0x7fffb7f71dbc 0x39

0x7fffb7f71dbd 0x30

0x7fffb7f71dbe 0x00

0x7fffb7f71dbf 0x00



CSE351, Summer 2020L03:  Memory & Data II

Summary

❖ Assignment in C results in value being put in memory 
location

❖ Pointer is a C representation of a data address
▪ & = “address of” operator

▪ * = “value at address” or “dereference” operator

❖ Pointer arithmetic scales by size of target type

▪ Convenient when accessing array-like structures in memory

▪ Be careful when using – particularly when casting variables

❖ Arrays are adjacent locations in memory storing the 
same type of data object

▪ Strings are null-terminated arrays of characters (ASCII)

33


