
CSE351, Summer 2020L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351 Spring 2020

http://xkcd.com/953/

Instructor:
Porter Jones

Teaching Assistants:
Amy Xu
Callum Walker
Sam Wolfson
Tim Mandzyuk

http://xkcd.com/953/

CSE351, Summer 2020L02: Memory & Data I

Administrivia

❖ Questions doc for today: https://tinyurl.com/CSE351-6-24

▪ Please use this!

❖ Should be enrolled in Gradescope, Piazza

▪ Email me if you did not receive email from either

❖ Make sure to register for Poll Everywhere

▪ Not for credit this week, instructions on website

2

https://tinyurl.com/CSE351-6-24

CSE351, Summer 2020L02: Memory & Data I

Administrivia

❖ Predetermined breakout groups for lecture

▪ If you’d like to have a consistent group during lecture

▪ Piazza announcement yesterday, sign up for a Canvas group

▪ See Piazza announcement related to finding breakout
groups and study groups for the quarter

❖ CSE 391 Registration

▪ Not required for 351, but teaches some skills that are useful
in a variety of contexts.

▪ Currently full, ask advisors to see if you can get an add code.

3

CSE351, Summer 2020L02: Memory & Data I

Administrivia

❖ Assignments Overview

❖ Pre-Course Survey (on Canvas), hw0 (Gradescope) due Tonight
(6/24) – 11:59pm

❖ hw1 due Friday 6/26, hw2 due Monday 6/29, both at 10:30am

❖ Lab 0 due Friday (6/26) – 11:59pm

▪ This lab is exploratory and looks like a hw; the other labs will
look a lot different (involve writing code etc.)

▪ Don’t worry if everything in Lab 0 doesn’t make perfect
sense right now! We will cover all of these topics in more
detail later in the course.

▪ Lab 0 is about getting you used to modifying C code and
running it to see what the outcome is – a powerful tool for
understanding the concepts in this course!

4

CSE351, Summer 2020L02: Memory & Data I

Roadmap

5

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Summer 2020L02: Memory & Data I

Memory, Data, and Addressing

❖ Hardware - High Level Overview

❖ Representing information as bits and bytes

▪ Memory is a byte-addressable array

▪ Machine “word” size = address size = register size

❖ Organizing and addressing data in memory

▪ Endianness – ordering bytes in memory

❖ Manipulating data in memory using C

❖ Boolean algebra and bit-level manipulations

6

CSE351, Summer 2020L02: Memory & Data I

Hardware: Physical View

7

CPU
(empty slot)

USB…

I/O
controller

Storage connections

Memory

CSE351, Summer 2020L02: Memory & Data I

Hardware: Logical View

8

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Summer 2020L02: Memory & Data I

Hardware: 351 View (version 0)

❖ The CPU executes instructions

❖ Memory stores data

❖ Binary encoding!

▪ Instructions are just data
9

Memory

CPU

?

How are data
and instructions

represented?

CSE351, Summer 2020L02: Memory & Data I

Aside: Why Base 2?

❖ Electronic implementation

▪ Easy to store with bi-stable elements

▪ Reliably transmitted on noisy and inaccurate wires

❖ Other bases possible, but not yet viable:

▪ DNA data storage (base 4: A, C, G, T) is a hot topic

▪ Quantum computing

10

0.0V

0.5V

2.8V

3.3V

0 1 0

CSE351, Summer 2020L02: Memory & Data I

Binary Encoding Additional Details

❖ Because storage is finite in reality, everything is
stored as “fixed” length

▪ Data is moved and manipulated in fixed-length chunks

▪ Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

▪ Leading zeros now must be included up to “fill out” the fixed
length

❖ Example: the “eight-bit” representation of the
number 4 is 0b00000100

11

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Summer 2020L02: Memory & Data I

Hardware: 351 View (version 0)

❖ To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction

3) Perform the specified computation

4) (if applicable) Write the result back to memory
12

Memory

CPU

?
data

instructions

CSE351, Summer 2020L02: Memory & Data I

Hardware: 351 View (version 1)

13

Memory

CPU

take 469

registers

i-cache

data

instructions

❖ More CPU details:

▪ Instructions are held temporarily in the instruction cache

▪ Other data are held temporarily in registers

❖ Instruction fetching is hardware-controlled

❖ Data movement is programmer-controlled (assembly)

CSE351, Summer 2020L02: Memory & Data I

Hardware: 351 View (version 1)

14

Memory

CPU

take 469

registers

i-cache

data

instructions

❖ We will start by learning about Memory

How does a
program find its
data in memory?

CSE351, Summer 2020L02: Memory & Data I

An Address Refers to a Byte of Memory

❖ Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
▪ Each address is just a number represented in fixed-length binary

❖ Programs refer to bytes in memory by their addresses
▪ Domain of possible addresses = address space

▪ We can store addresses as data to “remember” where other data is in
memory

❖ But not all values fit in a single byte… (e.g. 351)
▪ Many operations actually use multi-byte values

15

• • •

CSE351, Summer 2020L02: Memory & Data I

Polling Question

❖ If we choose to use 4-bit addresses, how big is our
address space?

▪ i.e. How much space can we “refer to” using our addresses?

▪ Vote at http://PollEv.com/pbjones

A. 16 bits

B. 16 bytes

C. 4 bits

D. 4 bytes

E. We’re lost…

16

http://pollev.com/pbjones

CSE351, Summer 2020L02: Memory & Data I

Machine “Words”

❖ Instructions encoded into machine code (0’s and 1’s)

▪ Historically (still true in some assembly languages), all
instructions were exactly the size of a word

❖ We have chosen to tie word size to address size/width

▪ word size = address size = register size

▪ word size = 𝑤 bits → 2𝑤 addresses

❖ Current x86 systems use 64-bit (8-byte) words

▪ Potential address space: 𝟐𝟔𝟒 addresses
264 bytes 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

▪ Actual physical address space: 48 bits
17

CSE351, Summer 2020L02: Memory & Data I

Word-Oriented View of Memory

❖ Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of word-
sized chunks of data instead
▪ Addresses of successive words

differ by word size

▪ Which byte’s address should we
use for each word?

18

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr.
(hex)

CSE351, Summer 2020L02: Memory & Data I

Address of a Word = Address of First Byte in the Word

❖ Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of word-
sized chunks of data instead
▪ Addresses of successive words

differ by word size

▪ Which byte’s address should we
use for each word?

❖ The address of any chunk of
memory is given by the address
of the first byte
▪ To specify a chunk of memory,

need both its address and its size

19

32-bit
Words

Bytes
64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Summer 2020L02: Memory & Data I

Alignment

❖ The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
▪ View memory as a series of

consecutive chunks of this
particular size and see if your
chunk doesn’t cross a boundary

20

32-bit
Words

Bytes
64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Summer 2020L02: Memory & Data I

A Picture of Memory (64-bit view)

❖ A “64-bit (8-byte) word-aligned” view of memory:

▪ In this type of picture, each row is composed of 8 bytes

▪ Each cell is a byte

▪ An aligned, 64-bit
chunk of data will
fit on one row

21

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

CSE351, Summer 2020L02: Memory & Data I

A Picture of Memory (64-bit view)

❖ A “64-bit (8-byte) word-aligned” view of memory:

▪ In this type of picture, each row is composed of 8 bytes

▪ Each cell is a byte

▪ An aligned, 64-bit
chunk of data will
fit on one row

22

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

CSE351, Summer 2020L02: Memory & Data I

Addresses and Pointers

❖ An address refers to a location in memory

❖ A pointer is a data object that holds an address

▪ Address can point to any data

❖ Value 504 stored at
address 0x08

▪ 50410 = 1F816

= 0x 00 ... 00 01 F8

❖ Pointer stored at
0x38 points to
address 0x08

23

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Summer 2020L02: Memory & Data I

Addresses and Pointers

❖ An address refers to a location in memory

❖ A pointer is a data object that holds an address

▪ Address can point to any data

❖ Pointer stored at
0x48 points to
address 0x38

▪ Pointer to a pointer!

❖ Is the data stored
at 0x08 a pointer?

▪ Could be, depending
on how you use it

24

64-bit example
(pointers are 64-bits wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

😵

CSE351, Summer 2020L02: Memory & Data I

Data Representations

❖ Sizes of data types (in bytes)

25
To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64

boolean bool 1 1

byte char 1 1

char 2 2

short short int 2 2

int int 4 4

float float 4 4

long int 4 8

double double 8 8

long long long 8 8

long double 8 16

(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Summer 2020L02: Memory & Data I

Memory Alignment Revisited

❖ A primitive object of 𝐾 bytes must have an address
that is a multiple of 𝐾 to be considered aligned

❖ For good memory system performance, Intel (x86)
recommends data be aligned

▪ However the x86-64 hardware will work correctly otherwise
• Design choice: x86-64 instructions are variable bytes long

26

𝐾 Type
1 char

2 short

4 int, float

8 long, double, pointers

CSE351, Summer 2020L02: Memory & Data I

Byte Ordering

❖ How should bytes within a word be ordered in
memory?

▪ Want to keep consecutive bytes in consecutive addresses

▪ Example: store the 4-byte (32-bit) int:
0x a1 b2 c3 d4

❖ By convention, ordering of bytes called endianness

▪ The two options are big-endian and little-endian
• In which address does the least significant byte go?

• Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

27

CSE351, Summer 2020L02: Memory & Data I

Byte Ordering

❖ Big-endian (SPARC, z/Architecture)

▪ Least significant byte has highest address

❖ Little-endian (x86, x86-64)

▪ Least significant byte has lowest address

❖ Bi-endian (ARM, PowerPC)

▪ Endianness can be specified as big or little

❖ Example: 4-byte data 0xa1b2c3d4 at address 0x100

28

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

CSE351, Summer 2020L02: Memory & Data I

Byte Ordering

❖ Big-endian (SPARC, z/Architecture)

▪ Least significant byte has highest address

❖ Little-endian (x86, x86-64)

▪ Least significant byte has lowest address

❖ Bi-endian (ARM, PowerPC)

▪ Endianness can be specified as big or little

❖ Example: 4-byte data 0xa1b2c3d4 at address 0x100

29

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE351, Summer 2020L02: Memory & Data I

Summary

❖ Memory is a long, byte-addressed array

▪ Word size bounds the size of the address space and memory

▪ Different data types use different number of bytes

▪ Address of chunk of memory given by address of lowest byte
in chunk

▪ Object of 𝐾 bytes is aligned if it has an address that is a
multiple of 𝐾

❖ Pointers are data objects that hold addresses

❖ Endianness determines memory storage order for
multi-byte data

30

