
CSE351, Summer 2020L02: Memory & Data I

Memory,	Data,	&	Addressing	I
CSE	351	Spring	2020

http://xkcd.com/953/

Instructor:
Porter	Jones

Teaching	Assistants:
Amy	Xu
Callum	Walker
Sam	Wolfson
Tim	Mandzyuk

CSE351, Summer 2020L02: Memory & Data I

Administrivia

v Questions	doc	for	today:	https://tinyurl.com/CSE351-6-24
§ Please	use	this!

v Should	be	enrolled	in	Gradescope,	Piazza
§ Email	me	if	you	did	not	receive	email	from	either

v Make	sure	to	register	for	Poll	Everywhere
§ Not	for	credit	this	week,	instructions	on	website

2

CSE351, Summer 2020L02: Memory & Data I

Administrivia

v Predetermined	breakout	groups	for	lecture
§ If	you’d	like	to	have	a	consistent	group	during	lecture
§ Piazza	announcement	yesterday,	sign	up	for	a	Canvas	group
§ See	Piazza	announcement	related	to	finding	breakout	
groups	and	study	groups	for	the	quarter

v CSE	391	Registration
§ Not	required for	351,	but	teaches	some	skills	that	are	useful	
in	a	variety	of	contexts.

§ Currently	full,	ask	advisors	to	see	if	you	can	get	an	add	code.

3

CSE351, Summer 2020L02: Memory & Data I

Administrivia

v Assignments	Overview
v Pre-Course	Survey	(on	Canvas), hw0	(Gradescope)	due	Tonight	

(6/24)	– 11:59pm	
v hw1	due	Friday	6/26,	hw2	due	Monday	6/29,	both	at	10:30am
v Lab	0	due	Friday	(6/26)	– 11:59pm

§ This	lab	is	exploratory and	looks	like	a	hw;	the	other	labs	will	
look	a	lot	different	(involve	writing	code	etc.)

§ Don’t	worry	if	everything	in	Lab	0	doesn’t	make	perfect	
sense	right	now!		We	will	cover	all	of	these	topics	in	more	
detail	later	in	the	course.

§ Lab	0	is	about	getting	you	used	to	modifying	C	code	and	
running	it	to	see	what	the	outcome	is	– a	powerful	tool	for	
understanding	the	concepts	in	this	course!

4

CSE351, Summer 2020L02: Memory & Data I

Roadmap

5

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
x86	assembly
Procedures	&	stacks
Executables
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

CSE351, Summer 2020L02: Memory & Data I

Memory,	Data,	and	Addressing

v Hardware	- High	Level	Overview
v Representing	information	as	bits	and	bytes
§ Memory	is	a	byte-addressable	array
§ Machine	“word”	size	=	address	size	=	register	size

v Organizing	and	addressing	data	in	memory
§ Endianness	– ordering	bytes	in	memory

v Manipulating	data	in	memory	using	C
v Boolean	algebra	and	bit-level	manipulations

6

CSE351, Summer 2020L02: Memory & Data I

Hardware:		Physical	View

7

CPU
(empty	slot)

USB…

Bu
s	c
on
ne
cti
on
s

I/O
controller

Storage	connections
Memory

CSE351, Summer 2020L02: Memory & Data I

Hardware:		Logical	View

8

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Summer 2020L02: Memory & Data I

Hardware:		351	View (version	0)

v The	CPU	executes instructions
v Memory	stores data

v Binary	encoding!
§ Instructions	are just	data

9

Memory

CPU

?

How	are	data	
and	instructions	
represented?

CSE351, Summer 2020L02: Memory & Data I

Aside:		Why	Base	2?

v Electronic	implementation
§ Easy	to	store	with	bi-stable	elements
§ Reliably	transmitted	on	noisy	and	inaccurate	wires	

v Other	bases	possible,	but	not	yet	viable:
§ DNA	data	storage	(base	4:		A,	C,	G,	T)	is	a	hot	topic
§ Quantum	computing

10

0.0V
0.5V

2.8V
3.3V

0 1 0

CSE351, Summer 2020L02: Memory & Data I

Binary	Encoding	Additional	Details

v Because	storage	is	finite	in	reality,	everything	is	
stored	as	“fixed”	length
§ Data	is	moved	and	manipulated	in	fixed-length	chunks
§ Multiple	fixed	lengths	(e.g. 1	byte,	4	bytes,	8	bytes)
§ Leading	zeros	now	must be	included	up	to	“fill	out”	the	fixed	
length

v Example:		the	“eight-bit”	representation	of	the	
number	4	is	0b00000100

11

Least	Significant	Bit	(LSB)
Most	Significant	Bit	(MSB)

CSE351, Summer 2020L02: Memory & Data I

Hardware:		351	View (version	0)

v To	execute	an	instruction,	the	CPU	must:
1) Fetch	the	instruction
2) (if	applicable)	Fetch	data	needed	by	the	instruction
3) Perform	the	specified	computation
4) (if	applicable)	Write	the	result	back	to	memory

12

Memory

CPU

?
data

instructions

CSE351, Summer 2020L02: Memory & Data I

Hardware:		351	View (version	1)

13

Memory

CPU

take	469

registers

i-cache

data

instructions

v More	CPU	details:
§ Instructions	are	held	temporarily	in	the	instruction	cache
§ Other	data	are	held	temporarily	in	registers

v Instruction	fetching	is	hardware-controlled
v Data	movement	is	programmer-controlled	(assembly)

CSE351, Summer 2020L02: Memory & Data I

Hardware:		351	View (version	1)

14

Memory

CPU

take	469

registers

i-cache

data

instructions

v We	will	start	by	learning	about	Memory

How	does	a	
program	find	its	
data	in	memory?

CSE351, Summer 2020L02: Memory & Data I

An	Address	Refers	to	a	Byte	of	Memory

v Conceptually,	memory	is	a	single,	large	array	of	bytes,
each	with	a	unique	address (index)
§ Each	address	is	just	a	number	represented	in	fixed-length binary

v Programs	refer	to	bytes	in	memory	by	their	addresses
§ Domain	of	possible	addresses	=	address	space
§ We	can	store	addresses	as	data	to	“remember”	where	other	data	is	in	

memory

v But	not	all	values	fit	in	a	single	byte…	(e.g.	351)
§ Many	operations	actually	use	multi-byte	values

15

0x
0…
00

0x
F…
FF

• • •
0x
0…
01

0x
F…
FE

CSE351, Summer 2020L02: Memory & Data I

Polling	Question

v If	we	choose	to	use	4-bit	addresses,	how	big	is	our	
address	space?
§ i.e. How	much	space	can	we	“refer	to”	using	our	addresses?
§ Vote	at	http://PollEv.com/pbjones

A. 16	bits
B. 16	bytes
C. 4	bits
D. 4	bytes
E. We’re	lost…

16

CSE351, Summer 2020L02: Memory & Data I

Machine	“Words”

v Instructions	encoded	into	machine	code	(0’s	and	1’s)
§ Historically	(still	true	in	some	assembly	languages),	all	
instructions	were	exactly	the	size	of	a	word

v We	have	chosen to	tie	word	size	to	address	size/width
§ word	size	=	address	size	=	register	size
§ word	size	=	𝑤 bits	→ 2𝑤 addresses

v Current	x86	systems	use	64-bit	(8-byte)	words
§ Potential	address	space:	𝟐𝟔𝟒 addresses
264 bytes	» 1.8	x	1019 bytes
=	18	billion	billion bytes	=	18	EB	(exabytes)

§ Actual	physical	address	space:		48	bits
17

CSE351, Summer 2020L02: Memory & Data I

Word-Oriented	View	of	Memory
v Addresses	still	specify	

locations	of	bytes in	memory,	
but	we	can	choose	to	view	
memory	as	a	series	of	word-
sized	chunks of	data	instead
§ Addresses	of	successive	words	

differ	by	word	size
§ Which	byte’s	address	should	we	

use	for	each	word?

18

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr.
(hex)

CSE351, Summer 2020L02: Memory & Data I

Address	of	a	Word	=	Address	of	First	Byte	in	the	Word

v Addresses	still	specify	
locations	of	bytes in	memory,	
but	we	can	choose	to	view	
memory	as	a	series	of	word-
sized	chunks of	data	instead
§ Addresses	of	successive	words	

differ	by	word	size
§ Which	byte’s	address	should	we	

use	for	each	word?

v The	address	of	any chunk	of	
memory	is	given	by	the	address	
of	the	first	byte
§ To	specify	a	chunk	of	memory,	

need	both its	address and	its	size
19

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Summer 2020L02: Memory & Data I

Alignment
v The	address	of	a	chunk	of

memory	is	considered	aligned
if	its	address	is	a	multiple	of	its	
size
§ View	memory	as	a	series	of	

consecutive	chunks	of	this	
particular	size	and	see	if	your	
chunk	doesn’t	cross	a	boundary

20

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Summer 2020L02: Memory & Data I

A	Picture	of	Memory	(64-bit	view)

v A	“64-bit	(8-byte)	word-aligned”	view of	memory:
§ In	this	type	of	picture,	each	row	is	composed	of	8	bytes
§ Each	cell	is	a	byte
§ An	aligned,	64-bit	
chunk	of	data	will	
fit	on	one	row

21

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one	word

CSE351, Summer 2020L02: Memory & Data I

A	Picture	of	Memory	(64-bit	view)

v A	“64-bit	(8-byte)	word-aligned”	view of	memory:
§ In	this	type	of	picture,	each	row	is	composed	of	8	bytes
§ Each	cell	is	a	byte
§ An	aligned,	64-bit	
chunk	of	data	will	
fit	on	one	row

22

one	word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

CSE351, Summer 2020L02: Memory & Data I

Addresses	and	Pointers

v An	address refers	to	a	location	in	memory
v A	pointer is	a	data	object	that	holds	an	address

§ Address	can	point	to	any data

v Value	504	stored	at	
address	0x08
§ 50410 =	1F816
=	0x	00	...	00	01	F8

v Pointer	stored	at
0x38 points	to	
address	0x08

23

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit	example
(pointers	are	64-bits	wide)

big-endian

CSE351, Summer 2020L02: Memory & Data I

Addresses	and	Pointers

v An	address refers	to	a	location	in	memory
v A	pointer is	a	data	object	that	holds	an	address

§ Address	can	point	to	any data

v Pointer	stored	at
0x48 points	to	
address	0x38
§ Pointer	to	a	pointer!

v Is	the	data	stored
at	0x08 a	pointer?
§ Could	be,	depending
on	how	you	use	it

24

64-bit	example
(pointers	are	64-bits	wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

😵

CSE351, Summer 2020L02: Memory & Data I

Data	Representations

v Sizes	of	data	types	(in	bytes)

25To	use	“bool”	in	C,	you	must	#include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1

byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Summer 2020L02: Memory & Data I

Memory	Alignment	Revisited

v A	primitive	object	of	𝐾 bytes	must	have	an	address	
that	is	a	multiple	of	𝐾 to	be	considered	aligned

v For	good	memory	system	performance,	Intel	(x86)	
recommends	data	be	aligned	
§ However	the	x86-64	hardware	will	work	correctly	otherwise

• Design	choice:		x86-64	instructions	are	variable bytes	long

26

𝐾 Type
1 char
2 short
4 int, float
8 long, double, pointers

CSE351, Summer 2020L02: Memory & Data I

Byte	Ordering

v How	should	bytes	within	a	word	be	ordered	in	
memory?
§ Want	to	keep	consecutive	bytes	in	consecutive	addresses
§ Example:	store	the	4-byte	(32-bit)	int:	
0x a1 b2 c3 d4

v By	convention,	ordering	of	bytes	called	endianness
§ The	two	options	are	big-endian and	little-endian

• In	which	address	does	the	least	significant	byte go?
• Based	on	Gulliver’s	Travels:		tribes	cut	eggs	on	different	sides	
(big,	little)

27

CSE351, Summer 2020L02: Memory & Data I

Byte	Ordering

v Big-endian	(SPARC,	z/Architecture)
§ Least	significant	byte	has	highest	address

v Little-endian	(x86,	x86-64)
§ Least	significant	byte	has	lowest	address

v Bi-endian	(ARM,	PowerPC)
§ Endianness	can	be	specified	as	big	or	little

v Example: 4-byte	data	0xa1b2c3d4	at	address	0x100

28

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

CSE351, Summer 2020L02: Memory & Data I

Byte	Ordering

v Big-endian	(SPARC,	z/Architecture)
§ Least	significant	byte	has	highest	address

v Little-endian	(x86,	x86-64)
§ Least	significant	byte	has	lowest	address

v Bi-endian	(ARM,	PowerPC)
§ Endianness	can	be	specified	as	big	or	little

v Example: 4-byte	data	0xa1b2c3d4	at	address	0x100

29

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE351, Summer 2020L02: Memory & Data I

Summary

v Memory	is	a	long,	byte-addressed array
§ Word	size	bounds	the	size	of	the	address	space	and	memory
§ Different	data	types	use	different	number	of	bytes
§ Address	of	chunk	of	memory	given	by	address	of	lowest	byte	
in	chunk

§ Object	of	𝐾 bytes	is	aligned if	it	has	an	address	that	is	a	
multiple	of	𝐾

v Pointers	are	data	objects	that	hold	addresses
v Endianness	determines	memory	storage	order	for	
multi-byte	data

30

