W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Memory, Data, & Addressing |

CSE 351 Spring 2020

Instructor:
Porter Jones

. . ON A SCALEOF 1T 10,
Teaching Assistants: HOW LIKELY 1S IT THAT
Amy Xu THIS QUESTION 1S
Callum Walker USING BINARY?

Sam Wolfson

Tim Mandzyuk

http://xkcd.com/953/

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Administrivia

+» Questions doc for today: https://tinyurl.com/CSE351-6-24

= Please use this!

+» Should be enrolled in Gradescope, Piazza

®= Email me if you did not receive email from either

+» Make sure to register for Poll Everywhere

= Not for credit this week, instructions on website

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Administrivia

+» Predetermined breakout groups for lecture
= |f you'd like to have a consistent group during lecture
" Pjazza announcement yesterday, sign up for a Canvas group

= See Piazza announcement related to finding breakout
groups and study groups for the quarter

«» CSE 391 Registration

" Not required for 351, but teaches some skills that are useful
in a variety of contexts.

= Currently full, ask advisors to see if you can get an add code.

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Administrivia

+» Assignments Overview

» Pre-Course Survey (on Canvas), hwO (Gradescope) due Tonight
(6/24) — 11:59pm

- hwl due Friday 6/26, hw2 due Monday 6/29, both at 10:30am
» Lab 0 due Friday (6/26) — 11:59pm

" This lab is exploratory and looks like a hw; the other labs will
look a lot different (involve writing code etc.)

Don’t worry if everything in Lab 0 doesn’t make perfect
sense right now! We will cover all of these topics in more
detail later in the course.

Lab O is about getting you used to modifying C code and

running it to see what the outcome is —a powerful tool for
understanding the concepts in this course!

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs

~ & Memory & caches

Assembly get_mpg: Processes

_ pushg S$rbp
Ianguage' movq srsp, Srbp

Virtual memory
Memory allocation

pPopq Srbp Java vs. C
ret i
\ 4
Machine 0111010000011000
code: 100011010000010000000010
. 1000100111000010
110000011111101000011111

Computer
system:

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Memory, Data, and Addressing

» Hardware - High Level Overview
+ Representing information as bits and bytes
" Memory is a byte-addressable array
" Machine “word” size = address size = register size
+ Organizing and addressing data in memory
" Endianness — ordering bytes in memory
+» Manipulating data in memory using C
+~ Boolean algebra and bit-level manipulations

W UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: Physical View

/O Intel ICH10 |

Chipset

controller

Serial ATA
Headers

PCl-Express Slots
1 PCI-E X16, 2 PCI-E X1

Storage connections

USB...

Back Panel Connectors

CSE351, Summer 2020

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

DDR2
1066+MHz
Dual Channel
Memory Slots

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Hardware: Logical View

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Hardware: 351 View (version 0)

4 O

P Y,

« The CPU executes instructions

+» Memory stores data How are data

and instructions
. Ri : 2
+ Binary encoding! represented?

= |nstructions are just data (o.xsé_ afoced i W‘j\ .

W UNIVERSITY of WASHINGTON L02: Memory & Data |

Aside: Why Base 2?

+ Electronic implementation

= Easy to store with bi-stable elements

CSE351, Summer 2020

= Reliably transmitted on noisy and inaccurate wires

«——— 0

3.3V —
2.8V —

1

0.5V —

/——\,/_J
0.0V —

/

7\

+» Other bases possible, but not yet viable:
= DNA data storage (base 4: A, C, G, T) is a hot topic

" Quantum computing

—) —

\

SN

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Binary Encoding Additional Details

» Because storage is finite in reality, everything is
stored as “fixed” length

= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

= Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the
number 4 is 0b00000100 _}<= .

Least Significant Bit.(LSB) L/
Most Significant Bit (MSB) WAoot we,.o\)u\-
Mot we,foﬁd' e ‘

?AA-%

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Hardware: 351 View

e instructions

\LP Y,

+» To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation

4) (if applicable) Write the result back to memory

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Hardware: 351 View (version 1)

instructions

i-cache

take 469

G P U registers/

«+ More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers

+ Instruction fetching is hardware-controlled

+ Data movement is programmer-controlled (assembly)

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Hardware: 351 View (version 1)

instructions

i-cache

take 469

«» We will start by learning about Memory

How does a
program find its
data in memory?

N /

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

An Address Refers to a Byte of Memory

$ & \ s\ e reless \-0 ‘j‘ N & &

6\9 5\9 Q‘\<~< Q‘\<~< o 3\,.4%‘(*

AR odd
o\\\éf;l*\)
» Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

= Each address is jUSt a numbergepresented in flxed—length bmary

e.3. & b-bie s31ceSsS Must Le gpecit’ Wi 4

Programs refer to bytes in memory by their addresses

= Domain of possible addresses = address space
= We can store addresses as data to “remember” where other data is in
memory Qs = ZQ NiasS ¥ 25 € Pny5
& 0-255
But not all values fit in a single byte... (e.g. 351)

"= Many operations actually use multi-byte values

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Polling Question

+ If we choose to use 4-bit addresses, how big is our

address space?
= j.,e. How much space can we “refer to” using our addresses?

= \/ote at http://PollEv.com/pbjones

L(— ”g A‘S-g-c,fem*' kél‘ts%S

yA

£ och kléx&gs 'S l\ﬂj% SRS
o—

16 bytes
4 bits

. 4 bytes
We're lost...

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Historically (still true in some assembly languages), all
instructions were exactly the size of a word

+» We have chosen to tie word size to address size/width

= word size = address size = register size
" word size = w bits — 2" addresses __ , ,|s55

+ Current x86 systems use 64-bit (8-byte) words

= Potential address space: 2% addresses
2%4 bytes ~ 1.8 x 10%° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Word-Oriented View of Memory

[vie)

. . 64-bit 32-bit
» Addresses still specify Words Words

locations of bytes in memory,[,

— =~ o = — =2 =]

[Addr

L ——

but we can choose to view
memory as a series of word-\ | 5:— S |
sized chunks of data instead

= Addresses of successive wory
differ by word size

= Which byte’s address should
use for each word?

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Address of a Word = Address of First Byte in the Word

. . 64-bit 32-bit Bytes ddr.
« Addresses still specify Words Words YIS (hex)

locations of bytes in memory, 0x00
but we can choose to view Addr 0x01
memory as a series of word- LD 0x02

_ _ 0x03
sized chunks of data instead 0x04

= Addresses of successive words Addr 0x05

differ by word size 0004 0x06

= Which byte’s address should we Ox07
use for each word? 0x08

Addr
. The address of any chunk of - 0x09

memory is given by the address o 8§8é

of the first byte 0x0C

= To specify a chunk of memory, Addr Ox0D

need both its address and its size 0012 OxOE
- ' OxOF

19

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Alignment

64-bit 32-bit
» The address of a chunk of Words Words

memory is considered aligned
if its address is a multiple of its _
size 0000

Addr

= View memory as a series of
consecutive chunks of this Addr
particular size and see if your oo=04
chunk doesn’t cross a boundary

Addr

0008('6*

Addr

0012

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:
= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte x one word
I

= An aligned, 64-bit ol \
Chunk Of data W|” Address OXIOO 0x'01 0x02 0x03 0x’04 0x’05 0x’06 0)(’07

_ T ¥
fit on one row

I
J ¥

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:
= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word
I

\CBX“.\.'Y

0x02 0x03 0x04 O0x05 O0x06 O0x07

chunk of data will 7 “li 7

fit on one row

= An aligned, 64-bit [\
Aéress

(=)
S~é
o
(=)
WN. X
o

0Ox00
Ox08
0x10
Ox18
0x20
Ox28
Ox30
Ox38
0x40
Ox48

47
-7
7

P-4

U NI (N RPN WS NI S— - U ——

N

\

Ox

Py
e

(=]
x 7

o
X

(=}
o
o
XX

o

______________________8
el wtat S BE B S B B

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

{ 64-bit example]
()

pointers are 64-bits wide

Addresses and Pointers

big-endian

» An address refers to a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data
AN

« Value 504 stored at

Address

address 0x08 0x00 | ¢+ i\ i & !
= 504,,=1F8,, 0x08 100:00:00:00:00:00:01:F3

_ Ox10 I I I I
=0x00...0001F8 Ox18 N

«» Pointer stored at 0x20

. Ox28
Ox38 points to 0x30

address 0x08 0x38
0x40
Ox48

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

{ 64-bit example]
()

pointers are 64-bits wide

Addresses and Pointers

big-endian

» An address refers to a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

« Pointer stored at
. Address
Ox48 points to oxo0 [+ T T T T
address 0x38 & 0x08 [00700700700}00:00;01F8

| . Ox10
" Pointer to a pointer! (5,18

+ Isthe data stored ~ 9x20
Ox28

at Ox08 a pointer? 430
" Could be, depending 8"23 ' , 00200 : 00 : 00 : 08
i X 1
s wldl PRNYYSET 048 [00700° $00 | 00 00 | 38
Puoglanmel ke €LY S

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Data Representations

+ Sizes of data types (in bytes)

Java Data Type x86-64

boolean
byte

char

C Data Type
bool

char

32-bit (old)

=

short

short int

int

int

float

float

long int

double

double

long

long long

QO O OO] I DD

long double

=
(@)}

(reference)

pointer *

D ol ol ol NN R

/ J

[address size =word size J

To use “bool” in C, you must #include <stdbool.h>

W UNIVERSITY of WASHINGTON

LO2: Memory & Data | CSE351, Summer 2020

Memory Alignment Revisited

+ A primitive object of K bytes must have an address
that is a multiple of K to be considered aligned

1

2
4
38

char

short

int, float

long, double, pointers

+» For good memory system performance, Intel (x86)
recommends data be aligned

= However the x86-64 hardware will work correctly otherwise

- Design choice: x86-64 instructions are variable bytes long

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Byte Ordering

+» How should bytes within a word be ordered in
memory?
= Want to keep consecutive bytes in consecutive addresses

= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4
WoOY 5w Cicant
oyt . oy .
+» By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian
- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Byte Ordering

+» Big-endian (SPARC, z/Architecture)

= Least significant byte has highest address
= Little-endian (x86, x86-64) Tm\«e;(\ﬁ

" Least significant byte has_]gwest address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+» Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 0x101 Ox102 0Ox103

Big-Endian

0x100 0x101 Ox102 0Ox103

Little-Endian

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Byte Ordering

» Big-endian (SPARC, z/Architecture)
= Least significant byte has highest address S
. _ wio ¢ \eS
+ Little-endian (x86, x86-64’§—/\L
= |east significant byte has lowest address
+ Bi-endian (ARM, PowerPC)
" Endianness can be specified as big or little

+~ Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 O0x101 0x102 x103
Big-Endian \| a1 | b2 | 3 | d4a

é(O\O 0x101 0x102 0Ox103

Little-Endian dd | c3 | b2 | al

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Summer 2020

Summary

» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

= Object of K bytes is aligned if it has an address that is a
multiple of K

+ Pointers are data objects that hold addresses

% Endianness determines memory storage order for
multi-byte data

