
CSE 351 Welcome back to section
Section 10 Worksheet: Memory Allocation
To understand the computer, you must become the computer.

For this problem, you will use a heap simulator to answer questions about heap memory allocation in C 
using malloc and free. First, access the heap simulator, either by going to the Lab 5 page on the course 
website, or by following the link:

https://courses.cs.washington.edu/courses/cse351/heapsim/

Read through the information on the page so you can understand how the simulator works. If you check 
“simulation mode” it will walk you through each step in the process of allocating a block of memory on the
heap. Notice that each header (and footer) contains three fields. They correspond to:

block size : preceding block allocated? : this block allocated?

where 1 means “allocated” and 0 means “unallocated.” Remember that block size includes the size of the 
headers and footers. In Lab 5, all of this will be stored within 8 bytes using the last few bits of the size (see 
the spec for more information).

Now, answer the following questions:

1. Starting with an empty heap (you can empty the heap by refreshing the page), “Execute” the following 
code:

void *ptr1 = malloc(30);
void *ptr2 = malloc(40);
void *ptr3 = malloc(70);

a. What pointer is returned if we execute another malloc now?
176 (the beginning of the free list + 8 bytes for the header.)

b. Which block(s) could you free that would cause fragmentation in the heap?
Just the block with the pointer 48. Neither of the other blocks have an allocated block on both 
sides.

c. Which block(s) could you free that would cause coalescing to occur?
Just the block with the pointer 96. It’s the only block bordered by an unallocated block.

d. Suppose free(ptr2) is run immediately after malloc(70). Draw a diagram of what the 
free list looks like afterwards. 

e. What is the maximum size payload that we could allocate (i.e. the argument to malloc) such 
that we are returned a pointer to the address 48 (0x30)

40. We have 48 bytes of free space starting at address 40 (which will return a pointer to 48 when allocated).The 
header consumes 8 bytes; so we have at most 40 bytes left over that we can use as a client.

Welcome back to section 😊

https://courses.cs.washington.edu/courses/cse351/heapsim/


In Lab 5, we will implement a memory management system that uses an explicit free list. Each block has 
pointers to the next and previous blocks. This is the block struct we will use:

struct BlockInfo {
// Size of the block (in the high bits) and tags for whether the
// block and its predecessor in memory are in use.
size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

};
typedef struct BlockInfo BlockInfo;

Implement the following functions. Try using bitwise operators to access the tags in sizeAndTags.
// Bit masks used to retrieve tags from sizeAndTags.
#define TAG_USED 1
#define TAG_PRECEDING_USED 2
// SIZE(blockInfo->sizeAndTags) extracts the size of a 'sizeAndTags' 
field.
#define SIZE(X) ((X) & ~(TAG_USED+TAG_PRECEDING_USED))
// Copies the tags (TAG_PRECEDING_USED and TAG_USED) from blockToCopy
// to originalBlock. Leaves the size of originalBlock unchanged.
void copyTags(BlockInfo* originalBlock, BlockInfo* blockToCopy) {

size_t copyUsed = (blockToCopy->sizeAndTags) & TAG_USED;

size_t copyPrecedingUsed = (blockToCopy->sizeAndTags) & 

TAG_PRECEDING_USED;

originalBlock->sizeAndTags = SIZE(originalBlock->sizeAndTags) | 

copyPrecedingUsed | copyUsed;

}

BlockInfo *FREE_LIST_HEAD;
// Removes a block from the free list.
void removeFreeBlock(BlockInfo* freeBlock) {

BlockInfo *nextFree, *prevFree;

nextFree = freeBlock->next;
prevFree = freeBlock->prev;

// If the next block is no NULL, patch its prev pointer
if (nextFree != NULL)

nextFree->prev = prevFree;

// If we’re removing the head of the free list, patch the head
// Otherwise, patch the previous block’s next pointer
if (FREE_LIST_HEAD == freeBlock)

FREE_LIST_HEAD = nextFree;
else

prevFree->next = nextFree;
}


