CSE 351 Section 8 - Processes and Virtual Memory

Welcome back to section, we're happy that you're here ©

] Write all four of the different possible outputs
Fork and Concurrenc (i.e. order of things printed) for this code?

Consider this code using Linux’s fork:

int x = 7;
if(fork()) {
X++;
printf (" %d ", x);
fork () ;
X++;
printf ("™ %d ", x);
} else {

printf (" %d ", x);
}

Tip: try drawing a process graph for this program

Exercises:

1) Name three specific benefits of using virtual memory:

2) What should happen to the TLB when a new entry is loaded into the page table base register?

3) Fill in the formulas below using descriptions, not variables:

Page offset bits = loga()

Virtual address bits = + page offset bits

Physical address bits = physical page number bits +

Virtual page number bits = loga()

Entries in a page table =

4) Fill in the following table:

VA width | PAwidth | Pagesize | VPN PPN Bits in PTE
(n) (m) (P) width | width | (assumeV,D,R, W,X)
32 32 16 KiB
32 26 13
32 21 22
32 KiB 25 26
64 48 29

5) Processor: 16-bit addresses, 256-byte pages

TLB: 8-entry fully associative with LRU replacement
e Track LRU (shown in decimal) using 3 bits to encode the order in which pages were accessed, with 0
being the most recent

At some time instant, the TLB for the current process is in the initial state given below.
Assume that all page table entries that are not in the initial TLB have read and write permissions, but no

execute permission (i.e. R=1,W=1,X=0).

permission (i.e. R=1,W=1,X=0).
Fill in the final state of the TLB according to the access pattern below. For each access, indicate if it leads to a:
a) TLB hit? b) TLB miss? c¢) Page fault? d) Protection fault?

OS will assign new pages starting at PPN 0x20, with read and write permissions but no execute

Initial TLB: Page Table (partial):

TLBT | PPN |Valid | R | W | X | Dirty | LRU VPN | Valid | PPN VPN [Valid | PPN
0x01 | 0x11 | 1 1110 1 0 0x0 0 0x00 0x8 1 0x1C
0x02 | 0x18 1 1 {010 0 6 Ox1 1 0x19 0x9 1 0x1D
0x10 | 0x13 | 1 1112 1 1 0x2 1 0x18 0xA 0 0x1E
0x20 | 0x12 | 1 ol1]o] o 5 0x3 1 0x17 0xB 1 0x1F
0x00 | 0x00 | © o[ofo 0 7 0x4 0 - 0xC 0 -
0x11 [ox14 | 1 1{o0]o 0 4 0x5 0 - 0xD 1 0x09
0xAC [0x15 | 1 1 ool o 2 0x6 1 0x1A OxE 0 -
0x34 | 0x16 | 1 1 [1]o 1 3 0x7 0 - 0xF 1 0x1B

Access pattern:
1) Read 0x11F0 2) Write 0x0301 3) Write 0x20AE 4) Write 0x0532 5) Read 0x0E15 6) Write OXACFF

Final TLB:

TLBT

PPN

Valid

Dirty

LRU

