
CSE 351 Section 6 – Buffer Overflow and Caches
Hi there! Welcome back to section, we’re happy that you’re here ☺

Buffer Overflow!

Consider the following C program:

void main() {

 read_input();

}

int read_input() {

 char buf[8];

 gets(buf);

 return 0;

}

Here is a diagram of the stack in read_input()right before the call to gets():

a) What is the value of the return address stored on the stack?

Assume that the user inputs the string “jklmnopqrs”

b) Write the values in the stack before the “return 0;” statement is executed. Cross

out the values that were overwritten and write in their new values.

(Hint: use the ASCII table at the bottom to convert from letters to bytes)

c) What is the new return address after the call to gets()?

d) Where will execution jump to after the “return 0;”?

e) How many characters would we have to enter into the command line to overwrite the

return address to 0x6A6B6C6D6E6F?

f) Create a string that will overwrite the return address, setting it to 0x6A6B6C6D6E6F

In Lab 3, we are given a tool called sendstring, which converts hex digits into the actual bytes

 >echo “61 62 63” | ./sendstring
 abc

g) If we want to overwrite the return address to a stack address like 0x7FFFFFAB1234, we

need to use a tool like sendstring to send the correct bytes.

Why can’t we just manually type the characters like we did earlier with “jklmnopqrs”?

Address Value
(hex)

%rsp+15 00

%rsp+14 00

%rsp+13 00

%rsp+12 00

%rsp+11 00

%rsp+10 40

%rsp+9 AF

%rsp+8 3B

%rsp+7

%rsp+6

%rsp+5

%rsp+4

%rsp+3

%rsp+2

%rsp+1

%rsp+0

Check out the Lab 3 video on
Phase 0 before you start the lab!

It’s linked on the Lab 3 page

Caches: Locality!

Recall that we have two types of locality that we can have in code:

Temporal locality: when recently referenced items are likely to be referenced again in the near future.
Spatial locality: when nearby addresses tend to be referenced close together in time.

For each type of locality, can you give an example of when we might see it in code?

Temporal Locality: Spatial Locality:

Accessing a Cache (Hit or Miss?)

Assume the following caches all have block size 𝐾 = 4 and are in the current state shown (you can ignore "—").

All values are shown in hex. Tag fields are padded, and bytes of the cache blocks are shown in full. The word size
for the machine with these caches is 12 bits (i.e. addresses are 12 bits long)

Direct-Mapped:

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 1 15 63 B4 C1 A4 8 0 — — — — — Offset bits: ______

1 0 — — — — — 9 1 00 01 12 23 34

2 0 — — — — — A 1 01 98 89 CB BC

3 1 0D DE AF BA DE B 0 1E 4B 33 10 54 Index bits: ______

4 0 — — — — — C 0 — — — — —

5 0 — — — — — D 1 11 C0 04 39 AA

6 1 13 31 14 15 93 E 0 — — — — — Tag bits: ______

7 0 — — — — — F 1 0F FF 6F 30 00

 Hit or Miss? Data returned

a) Read 1 byte at 0x7AC

b) Read 1 byte at 0x024

c) Read 1 byte at 0x99F

2-way Set Associative:

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 0 — — — — — 0 0 — — — — — Offset bits: ______

1 0 — — — — — 1 1 2F 01 20 40 03

2 1 03 4F D4 A1 3B 2 1 0E 99 09 87 56

3 0 — — — — — 3 0 — — — — — Index bits: ______

4 0 06 CA FE F0 0D 4 0 — — — — —

5 1 21 DE AD BE EF 5 0 — — — — —

6 0 — — — — — 6 1 37 22 B6 DB AA Tag bits: ______

7 1 11 00 12 51 55 7 0 — — — — —

 Hit or Miss? Data returned

a) Read 1 byte at 0x435

b) Read 1 byte at 0x388

c) Read 1 byte at 0x0D3

Fully Associative:

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3
0 1 1F4 00 01 02 03 0 0 — — — — — Offset bits: ______

0 0 — — — — — 0 1 0AB 02 30 44 67

0 1 100 F4 4D EE 11 0 1 034 FD EC BA 23

0 1 077 12 23 34 45 0 0 — — — — — Index bits: ______

0 0 — — — — — 0 1 1C6 00 11 22 33

0 1 101 DA 14 EE 22 0 1 045 67 78 89 9A

0 0 — — — — — 0 1 001 70 00 44 A6 Tag bits: ______

0 1 016 90 32 AC 24 0 0 — — — — —

 Hit or Miss? Data returned

a) Read 1 byte at 0x1DD

b) Read 1 byte at 0x719

c) Read 1 byte at 0x2AA

Cache Sim

If you need help on using the cache sim, take a look at additional supplemental material that will guide you through
using the cache sim (posted with today’s section handouts)! The cache sim is very useful for lab 4 and
corresponding homework assignments.

