CSE 351 Section 5 - Arrays and Structs
Welcome back to section, we're happy that you're here ©
Arrays

e Arrays are contiguously allocated chunks of memory large enough to hold the specified number of
elements of the size of the datatype. Separate array allocations are not guaranteed to be contiguous.

e 2-dimensional arrays are allocated in row-major ordering in C (i.e. the first row is contiguous at the start of
the array, followed by the second row, etc.).

e 2-level arrays are formed by creating an array of pointers to other arrays (i.e. the second level).

Structs

e Structs are contiguously allocated chunks of memory that hold a programmer-defined collection of
potentially disparate variables.

o Individual fields appear in the struct in the order that they are declared

e Each field follows its variable alignment requirement, with internal fragmentation added between fields as
necessary.

e The overall struct is aligned according to the largest field alignment requirement, with external
fragmentation added at the end as necessary.

struct Student {
int id;
char* name;
char age;

}s

a) Fill in which bytes are used by which variables and label the rest as internal or external fragmentation. The
first variable “id” is given.

id
b) What s the size of struct Student?

¢) Give areordering of the fields in struct Student such that there is no internal fragmentation

struct Student {

b

d) How much external fragmentation does this new struct Student have?

e) What is the size of this new struct Student?

We have a two-dimensional matrix of integer data of size M rows and N columns. We are considering 3 different
representation schemes:

1) 2-dimensional array int array2DI[][], // M*N array of ints
2) 2-level array int* array2L[],and // M array of int arrays
3) array of linked lists struct node* arrayLL[]. // M array of linked lists (struct node)

Consider the case where M = 3 and N = 4. The declarations are given below:

2-dimensional array: 2-level array: Array of linked lists:
int array2D[3][4]; int r0[4], rl[4], r2[4]; struct node {
int* array2L[] = {r0,rl,r2}; int col, num;

struct node* next;
}:
struct node* arrayLL[3];
// code to build out LLs

0 0 1 0
For example, the diagrams below correspond to the matrix [—4 05 o] forarray2lL and arrayLL:
0 0 0 O

next

col
[0[o[7] [z[o]] [212]7] [3[o]e]
num

array2L[0] nnnu arrayLL[0] . . .
amay2i1]| = r1[-4[0]5]0] amayLL[1] lo]-4] "] [1]o]] [2]5]7] [3]|o]2]
amm2u2l| 4—re[0]0]0]0] | ™| J~[oTe[7] [io]’] [z[e]7] [Z[0]2]

@ = null pointer

a) Fill in the following comparison chart:

2-dim array 2-level array Array of LLs:

Overall Memory Used

Largest guaranteed
continuous chunk of
memory

Smallest guaranteed
continuous chunk of
memory

Data type returned by: array2D[1] array2L[1] arrayLL[1]

Number of memory accesses
to get int in the BEST case

Number of memory accesses
to get int in the WORST
case

b) Sam Student claims that since our arrays are relatively small (N < 256), we can save space by storing the col
field as a char in struct node. Is this correct? If so, how much space do we save? If not, is this an example
of internal or external fragmentation?

¢) Provide a scenario where a 2-dimensional array would be more useful and another where a 2-level array
would be more useful.

d) Sam wants to create a 2-D matrix of the countries of the world that can be accessed alphabetically. Which
implementation should Sam choose to represent this information? Describe what this implementation would
look like.

Afghanistan Albania Azerbaijan
Bahamas Burundi - ==

Zambia Zimbabwe -—— - ——

