CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here ☺

Signed Integers with Two's Complement

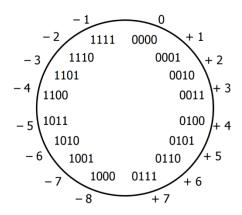
Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative (additive inverse) of a two's complement number can be found by:

flipping all the bits and adding 1 (i.e.
$$-x = \sim x + 1$$
).

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8



Exercises: (assume 8-bit integers)

1) What is the **largest integer**? The **largest integer** + 1?

<u>Unsigned</u> :	Two's Complement:
1111 1111 -> 0000 0000	0111 1111 -> 1000 0000

2) How do you represent (if possible) the following numbers: **39**, **-39**, **127**?

<u>Unsigned</u> :	Two's Complement:
39: 0010 0111	39: 0010 0111
-39: Impossible	-39: 1101 1001
127: 0111 1111	127: 0111 1111

3) Compute the following sums in binary using your Two's Complement answers from above. *Answer in hex.*

a. 39 - + (-39) -									b. 127 -> 0b 0 1 1 1 1 1 1 + (-39) -> 0b 1 1 0 1 1 0 0	
0x 0 0 <	<- 0b	0 0	0	0	0	0	0	0	0x 5 8 <- 0b 0 1 0 1 1 0 0	0
c. 39 + (-127) -									d. 127 -> 0b 0 1 1 1 1 1 1 + 39 -> 0b 0 0 1 0 0 1 1	
0x A 8	<- 0b	1 (1	0	1	0	0	0	0x A 6 <- 0b 1 0 1 0 0 1 1	0

4) Interpret your answers from 2 & 3 and indicate if overflow has occurred for each of the representations. (For values that cannot be represented, interpret as Two's Complement, then convert to unsigned.)

a. 39 + (-39)	b. 127 + (-39)								
Unsigned: 0 overflow	Unsigned: 88 overflow								
Two's Complement: 0 no overflow	Two's Complement: 88 no overflow								
c. 39 + (-127)	d. 127 + 39								
Unsigned: 168 no overflow	Unsigned: 166 no overflow								
Two's Complement: -88 no overflow	Two's Complement: -90 overflow								

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results ($e.g. \approx$ and NaN).

IEEE 754 Floating Point Standard

The <u>value</u> of a real number can be represented in scientific binary notation as:

Value =
$$(-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^S \times 1.M_2 \times 2^{E-bias}$$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2^{w-1}-1
- **M**: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

	S	Е	M
float	1 bit	8 bits	23 bits
double	1 bit	11 bits	52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

E	M	Meaning
0	anything	denormalized number (denorm)
1-254	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

Bias Notation

5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?

 $2^{(5-1)} - 1 = 15$

6) Compare these two representations of E for the following values:

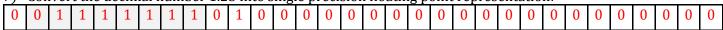
Exponent		Е	(5 bi	its)		E (8 bits)											
1	1	0	0	0	0	1	0	0	0	0	0	0	0				
0	0	1	1	1	1	0	1	1	1	1	1	1	1				
-1	0	1	1	1	0	0	1	1	1	1	1	1	0				

Notice any patterns?

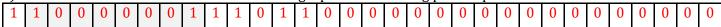
The representations are the same except the length of number of repeating bits in the middle are different.

Floating Point / Decimal Conversions

) Convert the decimal number 1.25 into single precision floating point representation:



8) Convert the decimal number -7.375 into single precision floating point representation:



9) Add the previous two floats from exercise 7 and 8 together.

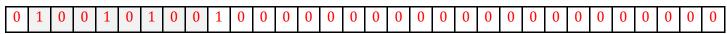
= -6.125

Convert that number into	single precisio	n floating point re	nrecentation
Convert that humber mito	siligie precisic	ni noating point re	presentation.

1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10) Let's say that we want to represent the number 3145728.125 (broken down as $2^{21} + 2^{20} + 2^{-3}$)

a. Convert this number to into single precision floating point representation:



b. How does this number highlight a limitation of floating point representation? Could only represent $2^21 + 2^20$. Not enough bits in the mantissa to hold 2^-3 , which caused *rounding*.

11) What are the decimal values of the following floats?

0x80000000

0xFF94BEEF

0x41180000

-0

NaN

+9.5

 $0x41180000 = 0b \ 0|100 \ 0001 \ 0|001 \ 1000 \ 0...0.$

S = 0, $E = 128 + 2 = 130 \rightarrow Exponent = E - bias = 3, Mantissa = <math>1.0011_2$

 $1.0011_2 \times 2^3 = 1001.1_2 = 8 + 1 + 0.5 = 9.5$

Floating Point Mathematical Properties

• Not <u>associative</u>: $(2 + 2^{50}) - 2^{50} != 2 + (2^{50} - 2^{50})$

• Not <u>distributive</u>: $100 \times (0.1 + 0.2) != 100 \times 0.1 + 100 \times 0.2$

• Not <u>cumulative</u>: $2^{25} + 1 + 1 + 1 + 1 + 1 = 2^{25} + 4$

Exercises:

12) Based on floating point representation, explain why each of the three statements above occurs.

Associative: Only 23 bits of mantissa, so $2 + 2^{50} = 2^{50}$ (2 gets rounded off). So LHS = 0, RHS = 2.

<u>Distributive</u>: 0.1 and 0.2 have infinite representations in binary point $(0.2 = 0.\overline{0011}_2)$, so the LHS and

RHS suffer from different amounts of rounding (try it!).

Cumulative: 1 is 25 powers of 2 away from 2^{25} , so $2^{25} + 1 = 2^{25}$, but 4 is 23 powers of 2 away from 2^{25} , so

it doesn't get rounded off.

13) If x and y are variable type float, give two *different* reasons why (x+2*y) - y = =x+y might evaluate to false.

(1) Rounding error: like what is seen in the examples above.

(2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.