# CSE 351 Section 3 – Integers and Floating Point

Welcome back to section, we're happy that you're here  $\odot$  .....

### Signed Integers with Two's Complement

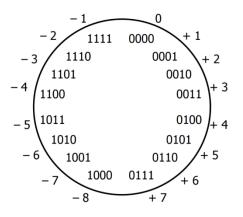
Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative value (additive inverse) of a Two's Complement number can be found by:
  <u>flipping all the bits and adding 1</u> (i.e. -x = ~x + 1).

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

2) How do you represent (if possible) the following numbers: 39, -39, 127?


Exercises: (assume 8-bit integers)

Unsigned:

Unsigned:

127:

1) What is the **largest integer**? The **largest integer** + 1?



| 39:  | 39:  |
|------|------|
| -39: | -39: |

3) Compute the following sums in binary using your **Two's Complement** answers from above. *Answer in hex.* 

| <b>a.</b> 39 -> 0b | <b>b.</b> 127 -> 0b            |
|--------------------|--------------------------------|
| +(-39) -> 0b       | + (-39) -> 0b                  |
| 0x <- 0b           | <sup>0x</sup> <- <sup>0b</sup> |
| <b>c.</b> 39 -> 0b | <b>d.</b> 127 -> 0b            |
| +(-127)-> 0b       | + 39 -> 0b                     |
| 0x <- 0b           | <sup>0x</sup> <- <sup>0b</sup> |

127:

**Two's Complement:** 

Two's Complement:

4) Interpret your answers from 2 & 3 and indicate if overflow has occurred for each of the representations. (For values that cannot be represented, interpret as Two's Complement, then convert to unsigned.)

| <b>a.</b> 39+(-39) | <b>b.</b> 127+(-39) |
|--------------------|---------------------|
| Unsigned:          | Unsigned:           |
| Two's Complement:  | Two's Complement:   |
| <b>c.</b> 39-127   | <b>d.</b> 127+39    |
| Unsigned:          | Unsigned:           |
| Two's Complement:  | Two's Complement:   |

### **Goals of Floating Point**

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (*e.g.*  $\infty$  and NaN).

## **IEEE 754 Floating Point Standard**

The <u>value</u> of a real number can be represented in scientific binary notation as:

## $Value = (-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^{S} \times 1.M_2 \times 2^{E-bias}$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2<sup>w-1</sup>-1
- M: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

|        | S     | Е       | М       |
|--------|-------|---------|---------|
| float  | 1 bit | 8 bits  | 23 bits |
| double | 1 bit | 11 bits | 52 bits |

How a float is interpreted depends on the values in the exponent and mantissa fields:

| Е     | М        | Meaning                      |
|-------|----------|------------------------------|
| 0     | anything | denormalized number (denorm) |
| 1-254 | anything | normalized number            |
| 255   | zero     | infinity (∞)                 |
| 255   | nonzero  | not-a-number (NaN)           |

#### Exercises:

### **Bias Notation**

- 5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?
- 6) Compare these two representations of E for the following values:

| Exponent | E (5 bits) | E (8 bits) |
|----------|------------|------------|
| 1        |            |            |
| 0        |            |            |
| -1       |            |            |

Notice any patterns?

## Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into single precision floating point representation:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ĺ |
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | L |

8) Convert the decimal number -7.375 into single precision floating point representation:

|   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  | 1        |
|---|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|----------|
|   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  | 1        |
|   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  | 1        |
|   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  | 1        |
|   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  | 1        |
|   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  | 1        |
| - |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  | <u> </u> |

9) Add the previous two floats from exercise 7 and 8 together. Convert that number into single precision floating point representation:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | لسسا |
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|------|

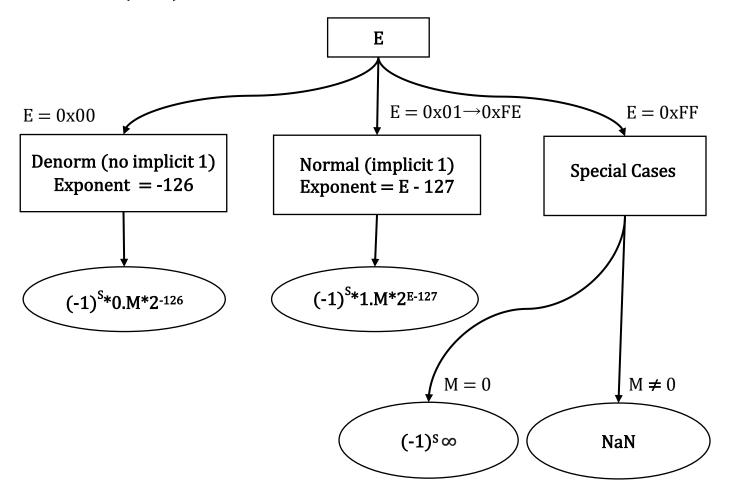
10) Let's say that we want to represent the number 3145728.125 (broken down as  $2^{21} + 2^{20} + 2^{-3}$ )

a. Convert this number to into single precision floating point representation:

b. How does this number highlight a limitation of floating point representation?

11) What are the decimal values of the following floats?

| 0x8000000 | 0xFF94BEEF | 0x41180000 |
|-----------|------------|------------|
|-----------|------------|------------|


#### **Floating Point Mathematical Properties**

- Not associative:  $(2 + 2^{50}) 2^{50} \neq 2 + (2^{50} 2^{50})$
- Not <u>distributive</u>:  $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
- Not <u>cumulative</u>:  $2^{25} + 1 + 1 + 1 + 1 \neq 2^{25} + 4$

#### Exercises:

12) Based on floating point representation, explain why each of the three statements above occurs.

13) If x and y are variable type float, give two *different* reasons why (x+2\*y) - y = x+y might evaluate to false.

