
CSE351, Spring 2020L27: Java and C - I

Java and C (part I)
CSE 351 Spring 2020

Instructor: Teaching Assistants:

Ruth Anderson Alex Olshanskyy Callum Walker Chin Yeoh

Connie Wang Diya Joy Edan Sneh

Eddy (Tianyi) Zhou Eric Fan Jeffery Tian

Jonathan Chen Joseph Schafer Melissa Birchfield

Millicent Li Porter Jones Rehaan Bhimani

https://xkcd.com/801/

https://xkcd.com/801/

CSE351, Spring 2020L27: Java and C - I

Administrivia

 Lab 5 (on Mem Alloc) due the last day of class (6/05)

 Light style grading

 Can be submitted at most ONE day late. (Sun 6/07)

 hw23 on Java and C due Mon (6/08)

 Unit Summary #4 – due Wed (6/10)

 Course evaluations now open

 Please fill these out!

 Separate ones for Lecture and Section

 You must log on with your @uw google account to access!!
 Google doc for 11:30 Lecture: https://tinyurl.com/351-06-01A

 Google doc for 2:30 Lecture: https://tinyurl.com/351-06-01B

2

https://tinyurl.com/351-06-01A
https://tinyurl.com/351-06-01B

CSE351, Spring 2020L27: Java and C - I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2020L27: Java and C - I

Java vs. C

 Reconnecting to Java (hello CSE143!)

 But now you know a lot more about what really happens
when we execute programs

 We’ve learned about the following items in C; now
we’ll see what they look like for Java:

 Representation of data

 Pointers / references

 Casting

 Function / method calls including dynamic dispatch

4

CSE351, Spring 2020L27: Java and C - I

Worlds Colliding

 CSE351 has given you a “really different feeling”
about what computers do and how programs execute

 We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

 It’s not – it’s just a higher-level of abstraction

 Connect these levels via how-one-could-implement-Java in
351 terms

5

CSE351, Spring 2020L27: Java and C - I

Meta-point to this lecture

 None of the data representations we are going to talk
about are guaranteed by Java

 In fact, the language simply provides an abstraction
(Java language specification)

 Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

 But it is important to understand an implementation of the
lower levels – useful in thinking about your program

6

CSE351, Spring 2020L27: Java and C - I

Data in Java

 Integers, floats, doubles, pointers – same as C

 “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

 Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

 No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

 null is typically represented as 0 but “you can’t tell”

 Much more interesting:

 Arrays

 Characters and strings

 Objects
7

CSE351, Spring 2020L27: Java and C - I

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4
bytes)
 array.length returns value of this field

 Since it has this info, what can it do?

8

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2020L27: Java and C - I

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4
bytes)
 array.length returns value of this field

 Every access triggers a bounds-check
 Code is added to ensure the index is within bounds

 Exception if out-of-bounds

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2020L27: Java and C - I

Data in Java: Characters & Strings

 Two-byte Unicode instead of ASCII
 Represents most of the world’s alphabets

 String not bounded by a '\0' (null character)

 Bounded by hidden length field at beginning of string

 All String objects read-only (vs. StringBuffer)

10

Example: the string “CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Spring 2020L27: Java and C - I

Data in Java: Objects

 Data structures (objects) are always stored by reference, never
stored “inline”
 Include complex data types (arrays, other objects, etc.) using references

11

C:

 a[] stored “inline” as part of
struct

struct rec {

int i;

int a[3];

struct rec *p;

};

Java:

 a stored by reference in object

class Rec {

int i;

int[] a = new int[3];

Rec p;

...

}

i a p

0 4 16 24

i a p

0 4 2012

4 16

3

0

CSE351, Spring 2020L27: Java and C - I

Pointer/reference fields and variables

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like r->a in C

 So no Java field needs more than 8 bytes

12

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

C: Java:

CSE351, Spring 2020L27: Java and C - I

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to [the starts of] objects
 Can only be dereferenced to access a field or element of that object

13

struct rec {

int i;

int a[3];

struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])); // ptr

class Rec {

int i;

int[] a = new int[3];

Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1); // ref, index

r r

i a p

0 4 16 24

i a p

0 4 2012

int[3]

4 16

3

0

Java:C:

CSE351, Spring 2020L27: Java and C - I

Casting in C (example from Lab 5)

 Can cast any pointer into any other pointer
 Changes dereference and arithmetic behavior

14

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

...

int x;

BlockInfo *b;

BlockInfo *newBlock;

...

newBlock = (BlockInfo *) ((char *) b + x);

...

Cast back into
BlockInfo * to use
as BlockInfo struct

Cast b into char * to
do unscaled addition

s n p

80 16 24

s n p

x

CSE351, Spring 2020L27: Java and C - I

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

15

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

CSE351, Spring 2020L27: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

16

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)

CSE351, Spring 2020L27: Java and C - I

Polling Question [Java I]

 Given:

Vehicle v = new Vehicle();

 What happens with this line of code:

Boat b2 = (Boat) v;

 Vote at http://pollev.com/rea

A. Compiles and Runs with no errors

B. Compiler error

C. Compiles fine, then Run-time error

D. We’re lost…

17

http://pollev.com/rea

CSE351, Spring 2020L27: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

18

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)
✗ Compiler error: Wrong direction – elements Car

not in Vehicle (wheels)
✗ Runtime error: Vehicle does not contain all

elements in Boat (propellers)
✓ v2 refers to a Car at runtime
✗ Compiler error: Unconvertable types – b1 is

declared as type Boat

CSE351, Spring 2020L27: Java and C - I

Java Object Definitions

19

class Point {

double x;

double y;

Point() {

x = 0;

y = 0;

}

boolean samePlace(Point p) {

return (x == p.x) && (y == p.y);

}

}

...

Point p = new Point();

...

constructor

fields

method(s)

creation

CSE351, Spring 2020L27: Java and C - I

Java Objects and Method Dispatch

 Virtual method table (vtable)
 Like a jump table for instance (“virtual”) methods plus other class info

 One table per class

 Each object instance contains a vtable pointer (vptr)

 Object header : GC info, hashing info, lock info, etc.
 Why no size?

20

code for Point() code for samePlace()

vtable for class Point:

q

xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351, Spring 2020L27: Java and C - I

Java Constructors

 When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

21

Point p = new Point(); Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vptr = &Point_vtable;

p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

C pseudo-translation:

CSE351, Spring 2020L27: Java and C - I

Java Methods

 Static methods are just like functions

 Instance methods:
 Can refer to this;
 Have an implicit first parameter for this; and
 Can be overridden in subclasses

 The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

22

p.samePlace(q); p->vptr[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p

xvptr yheader

Point object

CSE351, Spring 2020L27: Java and C - I

Subclassing

 Where does “z” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor

 To override “samePlace”, use same vtable position

 Add new pointer at end of vtable for new method “sayHi”

23

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

CSE351, Spring 2020L27: Java and C - I

Subclassing

24

New code for
samePlace

Old code for
constructor

sayHi tacked on at end
Code for
sayHi

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

xvptr yheader

ThreeDPoint object

z

constructor samePlacevtable for ThreeDPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Spring 2020L27: Java and C - I

code for Point()

code for Point’s samePlace()
Point vtable:

xvptr yheader

Point object

p ???

Dynamic Dispatch

25

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object

z

ThreeDPoint vtable:

CSE351, Spring 2020L27: Java and C - I

Ta-da!

 In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

 You were tested on this endlessly

 The “trick” in the implementation is this part:
p->vptr[i](p,q)

 In the body of the pointed-to code, any calls to (other)
methods of this will use p->vptr

 Dispatch determined by p, not the class that defined a
method

26

CSE351, Spring 2020L27: Java and C - I

Practice Question

 Assume: 64-bit pointers, Java objects aligned to 8 B with 8-B header

 What are the sizes of the things being pointed at by ptr_c
and ptr_j?

27

struct c {

int i;

char s[3];

int a[3];

struct c *p;

};

struct c* ptr_c;

class jobj {

int i;

String s = "hi";

int[] a = new int[3];

jobj p;

}

jobj ptr_j = new jobj();

