YW UNIVERSITY of WASHINGTON

L25: Memory Allocation Il CSE351, Spring 2020

Memory Allocation i

CSE 351 Spring 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Alex Olshanskyy
Rehaan Bhimani
Callum Walker
Chin Yeoh

Diya Joy

Eric Fan

Edan Sneh
Jonathan Chen
Jeffery Tian
Millicent Li
Melissa Birchfield
Porter Jones
Joseph Schafer
Connie Wang
Eddy (Tianyi) Zhou

MY ACCESS To RESOURCES ON [SUBJTECT] OVER TIME:

1985 1950 1995 2000 2005 2010 205 2070

BOOK ON

SUBJECT
[suBTECT] PDF
SITE GOES POWN, BACKEND
[SUBTECT] \WJEB DATABASE DATA NOT ON Pfﬂma
[5uBTECT] MOBLE APP ﬂ’é‘&m m?a
(LOcAL UNIVERSITY PROJELT)
[SUBTELT] ANALYSIS SOFTLIARE |*—§5i WE 'Lfm%
INTERACTIVE [6UBTECT] CD-ROM oG (Do E AT EIER

LIBRARY MICROFILM
[SUBTECT] COLLECTION

IT¥ UNSETTUNG TO REALIZE HOW QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WJITHOUT ONGOING LIORK To MAINTAIN THEM.

http://xkcd.com/1909/



http://xkcd.com/1444/

YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Administrivia
% Unit Summary #3 — due this Friday (5/29)
+» Lab 5 (on Mem Alloc) due the last day of class (6/05)

The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

Understanding the concepts first and efficient debugging
will save you lots of time

Light style grading
Can be submitted at most ONE day late. (Sun 6/07)
hw22 due Monday (6/01) — Do EARLY, will help with Lab 5

» You must log on with your @uw google account to access!!

Google doc for 11:30 Lecture: https://tinyurl.com/351-05-27A
Google doc for 2:30 Lecture: https://tinyurl.com/351-05-278B



https://tinyurl.com/351-05-27A
https://tinyurl.com/351-05-27B

YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Implicit Free List Example

+ Each block begins with header (size in bytes and allocated bit)

+» Sequence of blocks in heap (size|allocated):
16]0,32|1, 64|0, 32|1

Start of heap
Free word
1610 321 640 32|1 % Allocated word
Allocated word

\/ unused

16 bytes = 2 word alignment

+~ 16-byte alignment for payload
= May require initial padding (internal fragmentation)
" Note size: paddingis considered part of previous block

/7

+ Special one-word marker (0| 1) marks end of list
= Zero size is distinguishable from all other blocks



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

(*p) gets the block
header

Implicit List: Finding a Free Block | oz 1)extacts the

allocated bit
. . (*p & -2) extracts
< F/rStflt the size

= Search list from beginning, choose first free block that fits:
p = heap start;

while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) { // too small
p=p+t (p & -2); // go to next block (UNSCALED +)
} // p points to selected block or end

= Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

p = heap start
- Free word

1610,  [32|1 640 321 % Allocated word

Allocated word
unused




YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Implicit List: Finding a Free Block

+» Next fit

= |ike first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

" Some research suggests that fragmentation is worse

+ Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput



YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Polling Question [Alloc I1]

+~ Which allocation strategy and requests %lz(%ad
remove external fragmentation in this
Heap? B3 was the last fulfilled request. >0
" http://pollev.com/rea 1o B
(A) BeSt'fit: 30
malloc (50), malloc (50) o TR
(B) First-fit:
malloc (50), malloc (30) >0

(C) Next-fit:
malloc (30),malloc (50)
(D) Next-fit: 1
Start of heap
malloc (50),malloc (30)

50



http://pollev.com/rea

YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Implicit List: Allocating in a Free Block

+ Allocating in a free block: splitting

" Since allocated space might be smaller than free space, we
might want to split the block

Assume ptr points to a free block and has unscaled pointer arithmetic

void split (ptr b, int bytes) { // bytes = desired block size
int newsize = ((bytes+15) >> 4) << 4; // round up to multiple of 16
int oldsize = *b; // why not mask out low bit?
*b = newsize; // initially unallocated
if (newsize < oldsize)
* (b+newsize) = oldsize - newsize; // set length in remaining
} // part of block (UNSCALED +)
/\/_\
malloc (24) : 16/t T48|0 16/t Free word
tr b = £ind(24+8)
gplit(b, 24+8) //\il///’_\\\m/’\\‘ Allocated word
allocate (b) Newly-allocated

1811 1321 1610|161

word

7



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il

Implicit List: Freeing a Block

CSE351, Spring 2020

+ Simplest implementation just clears “allocated” flag

" void free(ptr p) {*(p—-WORD) &= -2}
" But can lead to “false fragmentation”
/N NN
16/0
16“; 32|1IT | 16/1 Free word
P Allocated word
/\/\/\ Block of interest
free (p) 16]1  [32)0 1610, 161
malloc (40) Oops! There is enough free space, but

the allocator won’t be able to find it



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Implicit List: Coalescing with Next

% Join (coalesce) with next block if also free
/N NN

161 32/1 160 161
|§ lw | | Free word
P Allocated word
/\/_\ Block of interest
free (p) 1611 48)0 1“%; 16|1
~ logically gone
void free (ptr p) { // p polints to payload
ptr b = p - WORD; // b points to block header
*p &= -2; // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*next & 1) == 0) // 1f next block is not allocated,
*b += *next; // add its size to this block
}

+» How do we coalesce with the previous block?



YW UNIVERSITY of WASHINGTON

L25: Memory Allocation Il CSE351, Spring 2020

Implicit List: Bidirectional Coalescing

«» Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
®" Important and general technique!

32/0 32/0/32/1 32/1/48/0 48/0132/1 32/1

Format of eader size a| a=1: allocated block

allocated and 4 a=0: free block
free blocks: |
Pay an and size: block size (in bytes)
Boundary tags padding

| payload: application data

Footer size a| (allocated blocks only)

10



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

11



YW UNIVERSITY of WASHINGTON

L25: Memory Allocation Il

Constant Time Coalescing

Case 1

Case 3

m1l

m1l

n

m2

m2

m1

m1

m?2

m2

mi_ [1l Case?2
m1 1
n 0
n 0
m?2 1
m?2 1
n+ml 0 Case 4
n+ml 0
m?2 1
m?2 1

m1l

CSE351, Spring 2020

m1l

m?2

m?2

m1l 1
m1l 1
n+m?2 0
n+m?2 0

m1

n+ml+m2 |0

m1

m?2

m?2

n+ml+m2 |0




YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Implicit Free List Review Questions

32/0 32/0132/1 32/1/48/0 48/032/1 32/1
S s
S SN - S~

» What is the block header? What do we store and how?

» What are boundary tags and why do we need them?

» When we coalesce free blocks, how many neighboring blocks
do we need to check on either side? Why is this?

» |f | want to check the size of the n-th block forward from the
current block, how many memory accesses do | make?

13



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

— — -y ——
-~ TS -~ So, -7 =~
- N Ao ~a

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/\

10 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
14



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il

CSE351, Spring 2020

Explicit Free Lists

Allocated block: Free block:
Size a Size a
next
payload and A
padding
Size a size a

(same as implicit free list)

+ Use list(s) of free blocks, rather than implicit list of all blocks
"= The “next” free block could be anywhere in the heap

- So we need to store next/previous pointers, not just sizes
= Since we only track free blocks, so we can use “payload” for pointers
= Still need boundary tags (header/footer) for coalescing

15



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il

CSE351, Spring 2020

Doubly-Linked Lists

<« Linear Root Q'/\O Q'/L\\‘l/’ ‘/)\\/ /.\\4|/) O
= Needs head/root pointer
" First node prev pointer is NULL
= Last node next pointer is NULL
" Good for first-fit, best-fit

Start ‘/\Q\ 6‘(\\/ @\’\Q
» Circular ~ =

= Still have pointer to tell you which node to start with
"= No NULL pointers (term condition is back at starting point)
" Good for next-fit, best-fit

16



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Explicit Free Lists

+ Logically: doubly-linked list

> >
' ' C
A < B &
<

+ Physically: blocks can be in any order

—
v

/ Forward (next) links
A /Q B

32 —7 32|32 3248 /| | 48|32 3232 \ 32

C \/
& Back (prev) links

001‘

17



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before

o

After
(with splitting)

1Y

~—"

= malloc (..

18



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

B

efore °
® 1

After

(fully allocated)

19



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

= LIFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
- Pro: simple and constant time
- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search
- Pro: studies suggest fragmentation is better than the alternative

20



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

+» Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

+» How do we tell if a neighboring block if free?

21



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Boundary tags not J

Freeing with LIFO Policy (Case 1) [Shown' but don't

forget about them!

Before free (@)

Root LI O

» Insert the freed block at the root of the list

After

— YV

22



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 2) [Shown' but don't

Before free (@)
o

t

%o

« Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O

o ¢
@

23



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 3) [Shown' but don'

Before free (@)
®

t

%o

» Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root H

° <
O

24



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 4) [Shown' but don'

Before free (@)
o o

Root iI !I %o

O
» Splice predecessor and successor blocks out of list, coalesce all

3 memory blocks, and insert the new block at the root of the
lict
After

Root H

25



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and R
padding
Size a Size a

(same as implicit free list)

+» Lab 5 suggests no...

26



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

Explicit List Summary

+» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks
- Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

27



YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

BONUS SLIDES

The following slides are about the SegList Allocator, for
those curious. You will NOT be expected to know this
material.

28



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

— — -y ——
-~ TS -~ So, -7 =~
- N Ao ~a

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/\

10| 32 48 16

3) Segregated free list
= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
29



YW UNIVERSITY of WASHINGTON

L25: Memory Allocation Il

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
+» Qrganized as an array of free lists

Size class
(in bytes)

16

\ 4
\ 4

!

32

\ 4

!

48-64

!

80-inf

+ Often have separate classes for each small size

/7

+ For larger sizes: One class for each two-power size

CSE351, Spring 2020

30



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

SeglList Allocator

« Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of size m = n

= |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" If no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
"= Request additional heap memory from OS (using sbrk)

" Place remainder of additional heap memory as a single free
block in appropriate size class

31



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

SeglList Allocator

« Have an array of free lists for various size classes

+» To free a block:
= Mark block as free
" Coalesce (if needed)
" Place on appropriate class list

32



YW UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2020

SeglList Advantages

+ Higher throughput

= Searchis log time for power-of-two size classes

+ Better memory utilization

" First-fit search of seglist approximates a best-fit search of
entire heap

= Extreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

" Don’t need to use space for block size for the fixed-size
classes

33



