WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

WHEN WILL WE FORGET?
° BASED ON S (ENSUs BURERV
Memory Allocation | NATOML PUPULATON FIRIECTONS
. PEAIMING WE DONT REMEMBER QUTURAL

CSE 351 Spring 2020 EVENTS FROM GERORE. AGE. 5 0R 6

BY THIS | THE MPIORITY OF AMERICANS
Instructor: YEAR: | WILL BE TOOYONG TO REMEMBER:
Ruth Anderson 2006 | RETURN OF THE JEDY RELEPSE
Teaching Assi . 2017 | THE FiRST APRE MACINTOSH
eaching Assistants: 208 | New (o
Alex Olshanskyy 00 | CHAUEMGER
Rehaan Bhimani 2020 | CHERNOBYL
Callum Walker 2?2?; TB_‘H‘QC“W’;;E
Chin Yeoh 205 | T BeRuN WAL
Diya Joy 2024 | HAMMERTIME
Eric Fan 2025 | THE SOVIET UNION
Edan Sneh 20% | THE LA RIOTS

2027 | LORENA BOBRITT

Jonathan Chen 1008 | TFE AT G Reepse

Jeffery Tian 2029 | THE RWANDAN GENOCIDE
Millicent Li 2030 | O SIMPSON'S TRIAL
Melissa Birchfield 238 | ATIME BEFORE FACEROK

2039 | HY's Z LovE THE s

Porter Jones 2040 | HORRICANE. KATRINA
Joseph Schafer 2041 | THE PLANET Pwrmo
Connie Wang 2042 | THE FIRST iFHONE
Eddy (Tianyi) Zhou Adapted from soq7 | ANYTHING EYBARRASGING

https://xkcd.com/1093/ YOU DO ToDAY

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Administrivia

+» Lab 4 — Due TONIGHT, Friday 5/22

" Cache parameter puzzles and code optimizations

+» Lab 5 (on Mem Alloc) due the last day of class (6/05)

" The most significant amount of C programming you will do in
this class — combines lots of topics from this class: pointers,
bit manipulation, structs, examining memory

" Understanding the concepts first and efficient debugging will
save you lots of time

= Can be submitted at most ONE day late. (Sun 6/07)

» You must log on with your @uw google account to access!!
" Google doc for 11:30 Lecture: https://tinyurl.com/351-05-22A
" Google doc for 2:30 Lecture: https://tinyurl.com/351-05-22B

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Roadmap

C: //////”_—__—““\-<§\ Java:

car *c %:Eiiggc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = ; c.setMiles(100);

oy

c->gals = 17; c.setGals(17);

flo = get_mpg(c); float mpg =

’free(c);% c.getMPG();
~ Aér”Jh

Assembly get_mpg:

language: pushq %rbp

movq %rsp, %rbp _
Memory allocation

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Multiple Ways to Store Program Data

+ Static global dataf—\ :
>INt array[1024];

" Fixed size at compile-time
= Entire lifetime of the program | Int* foo(int n) {

int tmp;
(loaded from executable) “Zint local_array[n];

= Portion is read-only

(e.g. string literals) Int* dyn = _ _
(int®)malloc(n*sizeof(int));
«» Stack-allocated data return dyn
}

" Local/temporary variables

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

< Dynamic (heap) data
= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

Memory Allocation

Dynamic memory allocation

*

" |ntroduction and goals
= Allocation and deallocation (free)

Explicit allocation implementation
= |mplicit free lists
= Explicit free lists (Lab 5)

= Segregated free lists

*

+ Implicit deallocation: garbage collection
» Common memory-related bugs in C

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Dynamic Memory Allocation

% Programmers usekdynamic memory alloca 0

acquire virtual memory at run time ([___Userstack_

" For data structures whose size {—L

(or lifetime) is known only at runtime < Heap (via mal loc)

[e—

| Manage the heap of a process’ Uninitialized data (-bss)

virtual memorv: Initialized data (. data)
y: Program text (. text)

+ Types of allocators

= Explicit allocator: programmer allocates and frees space
- Example: malloc and free
——

" Implicit allocator: programmer only allocates space (no free)
- Example: garbage collection i | Caml, and Lisp
kv

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Dynamic Memory Allocation

2 AIIoca’gqor organizes heap as a collection of variable-
sized blogks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack

ignored here) ‘
— . ———~1<«— Top of heap

(Heap (via mal loc)) (brk ptr)
- —f// -

Uninitialized data (. bss)
Initialized data (. data)
Program text (. text)

WA UNIVERSITY of WASHINGTON

L24: Memory Allocation |

CSE351, Spring 2020

Allocating Memory in C

+ Need to#1nclude <stdlib.h>
» void®: malloc(size t size)

= Allocates a continuous block of S1ze bytes of uninitiali

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
« Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent
« Good practices:
o
" ptr = (int*) malloc(n*sizeaf(int));

- S1zeoT makes code more portable

- void¥*is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Allocating Memory in C

+ Needto#i1nclude <stdlib.h>
« void* malloc(size_t size)
= Allocates a continuous block of S1ze bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
« Returns NULL if allocation failed (also sets errno) or size==

= Different bloc ily adjacent S

« Related functions:

= void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block

= void* realloc(void* ptr, size_t size)
« Changes the size of a previously allocated block (if possible)

= void* sbrk{(intptr_t increment)
« Used internally by allocators to grow or shrink the heap

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Freeing Memory in C

+ Needto#1nclude <stdlib.h>

- - doesn“l’ dr\ansc the PunJ(er.'
oo VOld free(VO|d* ﬁj— (how porls o Aeallo(ated memory)

= Releases whole block pointed to by p to the pool of available memory

" Pointer p must be the address originally returned by m/c/real loc
(i.e. beginning of the block), otherwise system exception raised

= Don’t call Free on a block that has already been released or on NULL

10

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Memory Allocation Example in C

void foo(int n, int m) {
int 1, *p;
= (int*) malloc(n*sizeof(int)); /* allocate block of n ints */

IT (p == NULL) { /™ check for allocation error */
perror("'malloc™); ¢—print message relates o errno
ex1t(0);

+

for (1=0; 1<n; i1++) /™ initialize int array */
pLi] = ¥;

/™ add space for m ints to end of p block */
p = (int*) realloc(p,(n+tm)*sizeof(int));

iIT (p == NULL) { /™ check for allocation error */
perror(“'realloc');
exi1t(0);

+

for (i=n; 1 < n+m; 1++) /™ initialize new spaces */
pL1] = 1;

for (1=0; i<n+m; 1++) /> print new array */
printfC'%d\n", p[i]);:

] freegl, /> freep>/

11

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

=1 word = 8 bytes

Notation

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes

= Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes)

-

"= Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook)

/\(‘\
Heap :
\ N—
T |
Allocated block Free block
(4 words) (3 words) Free word
32 Lykeg 24 bytes

Allocated word

12

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

= 8-byte word

Allocation Example
\ ¢ -

malloc(32)

pl

/92 = malloc(40)

©
W
I

malloc(48)

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Implementation Interface

+~ Applications
= Can issue arbitrary sequence of mal loc and free requests

" Must never access memory not currently allocated

" Must never free memory not currently allocated

« Also must only use Free with previously mal loc’ed blocks
<

\
« Allocators

= Can’t control number or size of allocated blocks

= Must respond immediately to mal loc (tarth veoder o buctfer)
= Must allocate blocks from free memory Cblscks cant overlap)

" Must align blocks so they satisfy all alignment requirements
= Can’t move the allocated blocks (dedrymestatinm nd! allgme &)

o) loreal Vour Pd\“*e“ :
14

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Performance Goals

+» @Goals: Given some sequence of mal loc and free

requests Ry, Ry, ..., Ry, ..., R,,_1, maximizé throughput

and peak memory utilizatio

" These goals are often conflicting

/)
\
1) Throughput @o ﬂC@SXr

" Number of completed requests per unit time

= Example:

« If 5,000 mal loc calls and 5,000 Free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Performance Goals

+ Definition: Aggregate payload P,
= malloc(p) results in a block with a payload of p bytes

= After request R; has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size H,,

= Assume Hj;, is monotonically non-decreasing
« Allocator can increase size of heap using sbrk

)/

|
2) Peak Memory Utilization Tk : J

= Defined as U, = (ma}(x P;)/H;, after k+1 requests
1<

" Goal: maximize utilization for a sequence of requests
= Why is this hard? And what happens to throughput?

16

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

" Two types: internal and external

+» Recall: Fragmentation in structs
" Internal fragmentation was wasted space ms:de of the struct

(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

17

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Internal Fragmentation

+» For a given block, internal fragmentation occurs if
payload is smaller than the block

block
A
| — — |
Interna Interna
fragmentation — | payload : fragmentation

+ Causes: e — /4 0

= Padding for alignment purpos& e
= QOverhead of maintaining{heap daﬁ—structuresl(inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satisfy a
small request) Faster dhrahpet H sl indidually size every blook

+» Easy to measure because only depends on past
requests

18

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

= 8-byte word

External Fragmentation

+ For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
" That is, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough end ot heap

1
pl = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

oxterng) -ﬂ;{r@d&m /S L)\,_k
%

40 bLytes 1€ LAes !
p4 = malloc(48) o0h no’(What would happen now?)
5’6 B +0T6\\ ee, b\ﬁ h«Sf) Cov\"'lg\w\.\b'

+» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become
problematic

free(p2)

19

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Polling Question [Alloc]

+» Which of the following statements is FALSE?

/

= \/ote at http://pollev.com/rea

A A./Temporary arrays should not be allocated on the
\ Heap showd allocate on the Stack

/(B - mal loc returns an address of a block that is
. . alloctes onlyy no intdialization
L filled with garbage

C. Peak memory utilization is a measure of both

] . ceadle (o6
internal and external fragmentation ﬁf’:sw s:zw

V D. An allocation failure will cause your program to
Jus‘t returns NULL

stop
E. We're lost...

20

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

Implementation Issues

+» How do we know how much memory to free given
just a pointer?

+» How do we keep track of the free blocks?

+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

21

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
« This word is often called the header field or header

—_—-—

= Requires an extra word for every allocated block

furneh oddress poins
p0< & start of fory lsd

|
pO = malloc(32) 40
block size data

(nd size of pay‘w])

free(pO)

Ls reu header af P8,
Lree Hht much S poce

22

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2020

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

— — iy 1 -
- S P ~ o - =~

= ' O
40 32 48 16

—
——t

add pb'm‘*ek
2) Explicit free list among only the free blocks, using pointers

rend (\iv\\ce& \(‘\’!>
pom‘\‘cr
40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23

WA UNIVERSITY of WASHINGTON

Implicit Free Lists

« For each block we need

. S1Ze,

L24: Memory Allocation |

*
Ng Lk

-_

= Could store using two words, but wasteful

0

» Standard trick

is-allocated?

CSE351, Spring 2020
f Gdadreys is mublige st $ =0, 1000

e.g. with 8-byte alignment,

possible values for size:
00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes

1

-
o

= |f blocks are aligned, some low-order bits of S1ze are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading S1ze, must remember to mask out this bit!

8 bytes
A

//_\

Format of><~('

Da = 1: allocated block

allocated and
free blocks:
payload

a =0: free block

size: block size (in bytes)

optional
padding

(allocated blocks only)

e v’
o<

payload: application data

\

-1

If X is first word (header):
st gt
X = size | a;

@)C\\QC\ js.eleeked bit
a=Xx&1;

x&fi;
-1

24

