WA UNIVERSITY of WASHINGTON

L20: Processes CSES351, Spring 2020

Processes
CSE 351 Spring 2020
Instructor: Teaching Assistants:
Ruth Anderson Alex Olshanskyy Callum Walker Chin Yeoh
Connie Wang Diya Joy Edan Sneh
Eddy (Tianyi) Zhou Eric Fan Jeffery Tian
Jonathan Chen Joseph Schafer Melissa Birchfield
Millicent Li Porter Jones Rehaan Bhimani
REFRESH TYPE EXAMPLE SHORTCUTS EFFECT
SOFT REFRESH ~ GMAIL [REFRESH] BUTTON REQUESTS UPDATE. \WITHIN JAVASCRIPT
NORMAL REFRESH FS, CTRLR, 3ER REFRESHES FAGE
HARD REFRESH CTRLFS, cTRE{), 38R REFRESHES PAGE INCLUDING CACHED FILES
HPRDER REFRESH CTRL-{}-HYPER-ESC-R-FS REMOTELY (YCLES POWER To DATRCENTER
HARDEST REFRESH (TRe3E820# RIES-FS° INTERNET STARTS OVER FROM ARPANET
http://xkcd.com/1854/

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Administrivia

+» Lab 3 due TONIGHT, Wednesday (5/13)
% Lab 4 coming soon!

" Cache parameter puzzles and code optimizations

+» hw17 due Friday (5/15)
" |lab 4 preparation!

» You must log on with your @uw google account to access!!
" Google doc for 11:30 Lecture: https://tinyurl.com/351-05-13A
" Google doc for 2:30 Lecture: https://tinyurl.com/351-05-13B

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);

c->miles = 100; c.setMiles(100);

c->gals = 17; c.setGals(17);

float mpg = get mpg(c); float mpg =

free(c); C.getMPG();

~ —

Assembly get_mpg: — Processes
i pushqg %rbp

language: mov(q %rsp, %rbp

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Leading Up to Processes

% System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

WA UNIVERSITY of WASHINGTON L20: Processes

CSE351, Spring 2020

Control Flow

+~ So far: we’ve seen how the flow of control changes

as a single program executes

+ Reality: multiple programs running concurrentl

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

+» Exceptional control flow is basic mechanism used for:
" Transferring control between processes and
" Handling I/O and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Control Flow /i<ume ov\? hckqju
ot

« Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

instry v~

instr, .~
time instr,

instr,
<shutdown>

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

Altering the Control Flow

+» Up to now, two ways to change control flow:

= Jumps (conditional and unconditional)
= Call and return

= Both react to changes in program state

+ Processor also needs to react to changes in system state
J— Unix/Linux user hits “Ctrl-C” at the keyboard

- User clicks on a different application’s window on the screen
= Data arrives from a disk or a network adapter
= Instruction divides by zero

= System timer expires

= Can jumps and procedure calls achieve this?

= No —the system needs mechanisms for “exceptional” control flow!

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

This is extra

Java Digression (non-testable)

material

+ Java has exceptions, but they’'re something different

= Examples: NullPointerException, MyBadThingHappenedException, ...
= throw statements

= try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

+ Java exceptions are for reacting to (unexpected) program state
= Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+ System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

WA UNIVERSITY of WASHINGTON L20: Processes

Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms
= /Exceptions

« Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software
+ Higher level mechanisms

= Process context switch

« Implemented by OS software and hardware timer

" Signals

« Implemented by OS software
- We won't cover these — see CSE451 and CSE/EE474

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

Exceptions

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
Kernel

= Kernel is the memory-resident part of the OS

- Examples: division by 0, page fault, I/O request completes, Ctrl-C

__-/\

User Code OS Kernel Code

event —— current_instr exception R
T next_instr exception processing by
\l w,; then:
* return to current_instr,

e return to next_instr, OR
— =
* abort

_

<

+» How does the system know where to jump to in the OS?
10

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

This is extra

Exception Table_ (non-testable)

material

+ A jump table for exceptions (also called Interrupt Vector Table)
-—_— _—

=

= Each type of event has a unique —
exception number k

= k =index into exception table
(a.k.a interrupt vector)

code for
= Handler k is called each time exception handler 0
exception k occurs Exception ——tor
Table :
exception handler 1
0 "4 /
‘/‘51\\‘/ B code for
2 . exception handler 2
n-1 o
) j‘(’\'\o\e LI)
. N \m() ,\f
Ao~ Qe Exception code for
o e exception handler n-1
numbers

11

WA UNIVERSITY of WASHINGTON

L20: Processes

Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

CSE351, Spring 2020

This is extra

(non-testable)

material

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

12

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Leading Up to Processes

% System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

13

WA UNIVERSITY of WASHINGTON

L20: Processes

CSE351, Spring 2020

Asynchronous Exceptions (Interrupts)

+» Caused by events externa r

" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

- —

«» Examples:

= |/O interrupts
« Hitting Ctrl-C on the keyboard
« Clicking a mouse button or tapping a touchscreen

. @rrival of a packet from a network
rrival of data from a disk

" Timer interrupt

- Every few milliseconds, an external timer chip triggers an interrupt

« Used by the OS kernel to take back control from user programs

14

WA UNIVERSITY of WASHINGTON L20: Processes

CSE351, Spring 2020

Synchronous Exceptions

« Caused by events that occur as a result of executing an
instruction:

" Traps
« Intentional: transfer control to OS to perform some function

- Examples: system calls, breakpoint traps, special instructions
. Returns control to “next” instruction (" cuwest " inflr ik Unct 1wy SUNDWH°)

" Faults
« Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

« Either re-executes faulting (“current”) instruction or aborts
= Aborts L recoverable U ngt recverable
- Unintentional and unrecoverable

- Examples: parity error, machine check (hardware failure detected)
« Aborts current program

15

WA UNIVERSITY of WASHINGTON L20: Processes

CSE351, Spring 2020

System Calls

+» Each system call has a unique ID number

+» Examples for Linux on x86-64:

Number Name

0 read

1 write
<E;) open

3 close

4 stat

57 fork

59 [execve

60 _exit

62 kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

16

W UNIVERSITY of

WASHINGTON L20: Processes

CSE351, Spring 2020

Traps Example: Opening File

User calls open(filename, options)
Calls __open function, which invokes system call instruction syscal l

00000000000e5d70 <__ open>: ///_\\
e5d79: b8 02 00 00 00 mov $0x2,%e # open i1s syscall 2
ebd7e: Of 05 syscall # return value 1In %rax
e5d80: 48 3d 01 fO ff ff cmp SOXFFFFFFFFFFFFFO0L, %rax
ebdfa: c3 retq
User code OS Kernel code m %rax contains syscall number
m Other argumentsin %rdi,
Exception %rsi, %rdx, %rl10, %r8, %r9

syscall
cm
A

<

o
L

\l Open fl/e "
Returns B

y

Return value in %rax

Negative value is an error
corresponding to negative

errno
17

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

Fault Example: Page Fault

User writes to memory location int a[1000];
That portion (page) of user’s memory Jotie - () 4l
_) a[500] = 13;
is currently on disk)
80483b7: c7 05 10 9d 04 08 0d movl $0Xd,0X8949d10

LM)VIM(J MoV, \"W\V
User code OS Kernel code address ngt uwently

" Mennor Y

exception: page fault ~ handle_page_fault:

movl % >
Create page and

v

Page fault handler must load page into physical memory

Returns to faulting instruction: @m

= Successful on second try\/

18

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Fault Example: Invalid Memory Reference

int a[1000];
int main() {

a[5000] = 13;
+

80483b7: c7 05 60 e3 04 08 0Od movl $0xd,0x804e360

User Process 0S

l exception: page fault handle_page_fault:

movl

detect invalid address

signal process

A 4

A

Page fault handler detects invalid address
Sends SIGSEGV signal to user process

User process exits with “segmentation fault”
19

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Summary

+» Exceptions
= Events that require non-standard control flow

= Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:

+ Re-execute the current instruction
« Resume execution with the next instruction

- Abort the process that caused the exception

20

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Processes

+» Processes and context switching

+» Creating new processes
= fork(), exec*(), andwairt()

« Zombies

21

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

What is a process? It’s an illusion!

4)
Process 1

Memory

Stack

Heap

Data
Code —

CPU

Registers

Disk

Chrome.exe

22

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

What is a process?

+» Another abstraction in our computer system
" Provided by the OS
" OS uses a data structure to represent each process

" Maintains the interface between the program and the
underlying hardware (CPU + memory)

+» What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

+~ What is the difference between:
" A processor? A program? A process?

23

L20: Processes CSES351, Spring 2020

WA UNIVERSITY of WASHINGTON

Processes

+» A process is an instance of a running program
" One of the most profound ideas in computer science

"= Not the same as “program” or “processor”

+» Process provides each program with two key

abstractions: Memory
= [ogical control flow Stack
Heap

- Provided by kernel mechanism called context switching Code

« Each program s ve exclusiv PU
Data

" Private address space
/EPU

- Each program seems to have exclusive use of main memory

« Provided by kernel mechanism called virtual memory
ATRUar Imernor

Registers

N_

24

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L20: Processes

What is a process? It’s an illusion!

Computer
\}* Process 3
Process 2
“Memory” . ‘ P 4
rocess
Stack Process 1
Heap !
“CPU” " 2
CD;;Z “Memory” Memory
Stack Stack
Heap
“cPu g:z:) Data
Code Code
L | — |
“CpU” “CPU”
CPU
N
Disk ; | ;
Applications T
\
Chrome.exe) Slack.exe PowerPoint.exe
P
5

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

What is a process? It’s an illusion!

Computer
P Process 3
Process 2
“Memory” . ‘ P 4
rocess
Stack Process 1
Heap
Data “CPU” “Memory”
o ot
ac
Heap
“epy” Data
Code
L) — |
“CpU” “CPU”
Operating
System
CPU
Disk —
/Applications/
Chrome.exe Slack.exe PowerPoint.exe

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

+» Computer runs many processes simultaneously

= Applications for one or more users

« Web browsers, email clients, editors, ...

= Background tasks

- Monitoring network & 1/0 devices
27

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Multiprocessing: The Reality

Memory
: Stack | Stack Stack
Heap : Heap Heap
| .
Data 5 Data ses Data
__Code | : |\ Code —Code
Saved Saved Saved
registers . registers registers
CPU
Registers

+ Single processor executes multiple processes concurrently

" Process executions interleaved, CPU runs one at a time

= Address spaces managed by virtual memory system (later in course)

= Execution context (register values, stack, ...) for other processes saved in
memory 28

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L20: Processes

Multiprocessing

Memory
Stack Stack
Heap Heap
Data . Data coo
Code Code
Saved - Saved
Aegisters ; registers

Stack

Heap

Data

Code

Saved
registers

—4t
N

\egisters

1) Save current registers in memory

29

L20: Processes CSES351, Spring 2020

WA UNIVERSITY of WASHINGTON

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data 00 Data
Code : Code : Code
Saved Saved Saved
registers : registers . registers
[cpu
Registers

+» Context switch
1) Save current registers in memory
2) Schedule next process for execution (0S decides)

30

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data 00 Data
Code : Code : Code
Saved : < Saved
registers registers registers

CPU

Registers

—1

+ Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

31

WA UNIVERSITY of WASHINGTON

L20: Processes CSES351, Spring 2020

Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap Heap
: Data Data ces Data
: Code Code Code
Saved Saved Saved
: registers registers registers
[PV CPU— 1« Multicore processors
| |_Registers Registers | |- = Multiple CPUs (“cores”) on single chip

= Share main memory (and some of the
caches)

= Each can execute a separate process
- Kernel schedules processes to cores
- Still constantly swapping processes

32

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

—

Assume only one CPU

Concurrent Processes

+ Each process is a logical control flow

+» Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

" Otherwise, they are sequential

+» Example: (running on single core)
" Concurrent: A&B,A&C

= Sequential: B&C Process A Process B Process C
ot
B _I— S‘f'ar’-TB =5
. A (? S.L A+
time

K \OPB Star e
C (J’:\ v
- |V ‘JA
(4’.\ n

33

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Assume only one CPU

User’s View of Concurrency

+ Control flows for concurrent processes are physically
disjoint in time

" CPU only executes instructions for one process at a time

+» However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C Process A Process B Process C
User View 3
()]
£ —} § TN
i)
) //
/ LA
our wminds il

these in
34

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Assume only one CPU

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user

process
|-.=-| T Me.n!ory
Kernel virtual memory invisible to
OxFFFF FFFF FFFF e user code
+ |n x86-64 Linux: (created at run time) _
7 %rsp (stack pointer)
= Same address in each process X

refers to same Shared Memory mapped region for
i hared librari
memory location shared libraries

I

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

Assume only one CPU

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user
process

+ Context switch passes control flow from one process to
another and is performed using kernel code

Process A Process B

user code
B; sl kernel code } context switch
time D
user code

kernel code } context switch

user code

36

WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

Processes

+» Processes and context switching

+» Creating new processes
= fork(),exec*(),andwait()

« Zombies

37

WA UNIVERSITY of WASHINGTON

L20: Processes

Creating New Processes & Programs

r

Process 1

“Memory”

Stack

Heap

Data

-

fork()

Code

IICPUII

Registers

Process 2

“Memory”

Stack

Heap

Data

Code

IICPUH

Registers

exec*()

Chrome.exe

CSE351, Spring 2020

38

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

Creating New Processes & Programs

+ fork-exec model (Linux):
= fork() creates a copy of the current process

= exec®() replaces the current process’ code and address
space(with the code for a different program
- Family: execy, execl, execve, execle, execvp, execlp

= (Fork ()l andjexecve () are system calls

L]rv‘ev\‘Hov\c\\, SYh(.\'\YOV\O\AS exce(ﬁ"‘ons -:?

% Other system calls for process management:
" getpid()
= exit()
= wairt(),wartpid()

39

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

fork: Creating New Processes

pid t Fork(void)

= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

= Returns 0 to the child process

—_—

= Returns child’s process ID (PID) to the parent process

« Child is almost identical to parent:

" Child gets an identical id_t pid = forkQ;
(but separate) copy of the gif (pld = 0) {//)4
parent’s virtual address printf("*hello from child\n");
space } else {/pavent

= Child has a different PID printf(""hello from parent\n');
than the parent ¥

+» TFork s unique (and often confusing) because it is called once
but returns “twice”

40

L20: Processes

CSE351, Spring

2020

WA UNIVERSITY of WASHINGTON

Understanding Tork()

»

Process X (parent; PID X)

pid_t fork ret = fork(Q);
iIT (fork _ret 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');
+

fork
N>

»

Process Y (child; PID Y)

pid_t fork ret = fork();
iIfT (fork _ret == 0) {
printf("*hello from child\n");
} else {
printf("*hello from parent\n');
+

41

WA UNIVERSITY of WASHINGTON

Understanding Tork()

»

Process X (parent; PID X)

pid_t fork ret = fork(Q);
iIT (fork _ret 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');

+

fork ret }/Y}
pid_t fork ret = fork(Q); ~
iIT (fork ret == 0) {

printf("'hello from child\n');

} else {
printf("'hello from parent\n');

}

L20: Processes

»

»

CSE351, Spring 2020

Process Y (child; PID Y)—

pid_t fork ret = fork();
iIfT (fork _ret == 0) {
printf("*hello from child\n");
} else {
printf("*hello from parent\n');

+

fork ret=0_
pid_t fork ret = fork(Q); -
iIT (fork ret == 0) {

printf(*"hello from child\n™);

} else {
printf("'hello from parent\n');
¥

42

WA UNIVERSITY of WASHINGTON

Understanding Tork()

Process X (parent; PID X)

» pid t fork ret = fork();
iIT (fork ret == 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');

}

fork ret=Y

pid_t fork ret = fork(Q);

iIT (fork ret == 0) {
printf(""hello from child\n");

} else {

» printf(""hello from parent\n');
}

hello from parent

L20: Processes

CSE351, Spring 2020

Process Y (child; PIDY)

»

pid_t fork ret = fork();
iIfT (fork _ret == 0) {
printf("*hello from child\n");

} else {
printf("*hello from parent\n');
+

fork ret=0

pid_t fork_ret = fork(Q);
iIT (fork ret == 0) {
printf(*"hello from child\n");

} else {
printf("'hello from parent\n');

}

hello from child

Which one appears first?
Noh- dete rmi nistic 7

43

WA UNIVERSITY of WASHINGTON L20: Processes CSES351, Spring 2020

Summary

<« Processes

= At any given time, system has multiple active processes

" On a one-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes

« Implemented using exceptional control flow

+ Process management
= fork: one call, two returns
= execve: one call, usually no return
= waltorwaltpid: synchronization
= ex1t: onecall, noreturn

44

