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Administrivia

+» Lab 3 due TONIGHT, Wednesday (5/13)
% Lab 4 coming soon!

" Cache parameter puzzles and code optimizations

+» hw17 due Friday (5/15)
" |lab 4 preparation!

» You must log on with your @uw google account to access!!
" Google doc for 11:30 Lecture: https://tinyurl.com/351-05-13A
" Google doc for 2:30 Lecture: https://tinyurl.com/351-05-13B
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Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);

c->miles = 100; c.setMiles(100);

c->gals = 17; c.setGals(17);

float mpg = get mpg(c); float mpg =

free(c); C.getMPG();

~ —

Assembly get_mpg: — Processes
i pushqg %rbp

language: mov(q %rsp, %rbp

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:
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Leading Up to Processes

% System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)
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Control Flow

+~ So far: we’ve seen how the flow of control changes

as a single program executes

+ Reality: multiple programs running concurrentl

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

+» Exceptional control flow is basic mechanism used for:
" Transferring control between processes and
" Handling I/O and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency
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Control Flow /i<ume ov\? hckqju
ot

« Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

instry v~

instr, .~
time instr,

instr,
<shutdown>
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Altering the Control Flow

+» Up to now, two ways to change control flow:

= Jumps (conditional and unconditional)
= Call and return

= Both react to changes in program state

+ Processor also needs to react to changes in system state
J— Unix/Linux user hits “Ctrl-C” at the keyboard

- User clicks on a different application’s window on the screen
= Data arrives from a disk or a network adapter
= Instruction divides by zero

= System timer expires

= Can jumps and procedure calls achieve this?

= No —the system needs mechanisms for “exceptional” control flow!
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This is extra

Java Digression (non-testable)

material

+ Java has exceptions, but they’'re something different

= Examples: NullPointerException, MyBadThingHappenedException, ...
= throw statements

= try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

+ Java exceptions are for reacting to (unexpected) program state
= Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+ System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently
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Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms
= /Exceptions

« Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software
+ Higher level mechanisms

= Process context switch

« Implemented by OS software and hardware timer

" Signals

« Implemented by OS software
- We won't cover these — see CSE451 and CSE/EE474

CSE351, Spring 2020
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Exceptions

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
Kernel

= Kernel is the memory-resident part of the OS

- Examples: division by 0, page fault, I/O request completes, Ctrl-C

__-/\

User Code OS Kernel Code

event —— current_instr exception R
T next_instr exception processing by
\l w,; then:
* return to current_instr,

e return to next_instr, OR
— =
* abort

_

<

+» How does the system know where to jump to in the OS?
10
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This is extra

Exception Table_ (non-testable)

material

+ A jump table for exceptions (also called Interrupt Vector Table)
-—_— _—

=

= Each type of event has a unique —
exception number k

= k =index into exception table
(a.k.a interrupt vector)

code for
= Handler k is called each time exception handler 0
exception k occurs Exception ——tor
Table :
exception handler 1
0 "4 /
‘/‘51\\‘/ B code for
2 . exception handler 2
n-1 o
) j‘(’\'\o\e LI )
. N \m() ,\f
Ao~ Qe Exception code for
o e exception handler n-1
numbers

11
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Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

CSE351, Spring 2020

This is extra

(non-testable)

material

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

12
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Leading Up to Processes

% System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

13
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Asynchronous Exceptions (Interrupts)

+» Caused by events externa r

" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

- —

«» Examples:

= |/O interrupts
« Hitting Ctrl-C on the keyboard
« Clicking a mouse button or tapping a touchscreen

. @rrival of a packet from a network
rrival of data from a disk

" Timer interrupt

- Every few milliseconds, an external timer chip triggers an interrupt

« Used by the OS kernel to take back control from user programs

14
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Synchronous Exceptions

« Caused by events that occur as a result of executing an
instruction:

" Traps
« Intentional: transfer control to OS to perform some function

- Examples: system calls, breakpoint traps, special instructions
. Returns control to “next” instruction (" cuwest " inflr ik Unct 1wy SUNDWH°)

" Faults
« Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

« Either re-executes faulting (“current”) instruction or aborts
= Aborts L recoverable U ngt recverable
- Unintentional and unrecoverable

- Examples: parity error, machine check (hardware failure detected)
« Aborts current program

15
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System Calls

+» Each system call has a unique ID number

+» Examples for Linux on x86-64:

Number Name

0 read

1 write
<E;) open

3 close

4 stat

57 fork

59 [execve

60 _exit

62 kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

16
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Traps Example: Opening File

User calls open(filename, options)
Calls __open function, which invokes system call instruction syscal l

00000000000e5d70 <__ open>: ///_\\
e5d79: b8 02 00 00 00 mov $0x2,%e # open i1s syscall 2
ebd7e: Of 05 syscall # return value 1In %rax
e5d80: 48 3d 01 fO ff ff cmp SOXFFFFFFFFFFFFFO0L, %rax
ebdfa: c3 retq
User code OS Kernel code m %rax contains syscall number
m Other argumentsin %rdi,
Exception %rsi, %rdx, %rl10, %r8, %r9

syscall
cm
A

<

o
L

\l Open fl/e "
Returns B

y

Return value in %rax

Negative value is an error
corresponding to negative

errno
17
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Fault Example: Page Fault

User writes to memory location int a[1000];
That portion (page) of user’s memory Jotie - () 4l
_ ) a[500] = 13;
is currently on disk )
80483b7: c7 05 10 9d 04 08 0d movl $0Xd,0X8949d10

LM)VIM(J MoV, \"W\V
User code OS Kernel code address ngt uwently

" Mennor Y

exception: page fault ~ handle_page_fault:

movl % >
Create page and

v

Page fault handler must load page into physical memory

Returns to faulting instruction: @m

=  Successful on second try\/

18
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Fault Example: Invalid Memory Reference

int a[1000];
int main() {

a[5000] = 13;
+

80483b7: c7 05 60 e3 04 08 0Od movl $0xd,0x804e360

User Process 0S

l exception: page fault handle_page_fault:

movl

detect invalid address

signal process

A 4

A

Page fault handler detects invalid address
Sends SIGSEGV signal to user process

User process exits with “segmentation fault”
19
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Summary

+» Exceptions
= Events that require non-standard control flow

= Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:

+ Re-execute the current instruction
« Resume execution with the next instruction

- Abort the process that caused the exception

20
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Processes

+» Processes and context switching

+» Creating new processes
= fork(), exec*(), andwairt()

« Zombies

21
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What is a process? It’s an illusion!

4 )
Process 1

Memory

Stack

Heap

Data
Code —

CPU

Registers

Disk

Chrome.exe

22
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What is a process?

+» Another abstraction in our computer system
" Provided by the OS
" OS uses a data structure to represent each process

" Maintains the interface between the program and the
underlying hardware (CPU + memory)

+» What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

+~ What is the difference between:
" A processor? A program? A process?

23
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Processes

+» A process is an instance of a running program
" One of the most profound ideas in computer science

"= Not the same as “program” or “processor”

+» Process provides each program with two key

abstractions: Memory
= [ogical control flow Stack
Heap

- Provided by kernel mechanism called context switching Code

« Each program s ve exclusiv PU
Data

" Private address space
/EPU

- Each program seems to have exclusive use of main memory

« Provided by kernel mechanism called virtual memory
ATRUar Imernor

Registers

N_

24
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What is a process? It’s an illusion!

Computer
\}* Process 3
Process 2
“Memory” . ‘ P 4
rocess
Stack Process 1
Heap !
“CPU” " 2
CD;;Z “Memory” Memory
Stack Stack
Heap
“cPu g:z:) Data
Code Code
L | — |
“CpU” “CPU”
CPU
N
Disk ; | ;
Applications T
\
Chrome.exe) Slack.exe PowerPoint.exe
P
5




WA UNIVERSITY of WASHINGTON L20: Processes CSE351, Spring 2020

What is a process? It’s an illusion!

Computer
P Process 3
Process 2
“Memory” . ‘ P 4
rocess
Stack Process 1
Heap
Data “CPU” “Memory”
o ot
ac
Heap
“epy” Data
Code
L ) — |
“CpU” “CPU”
Operating
System
CPU
Disk —
/Applications/
Chrome.exe Slack.exe PowerPoint.exe
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Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

+» Computer runs many processes simultaneously

= Applications for one or more users

« Web browsers, email clients, editors, ...

= Background tasks

- Monitoring network & 1/0 devices
27
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Multiprocessing: The Reality

Memory
: Stack | Stack Stack
Heap : Heap Heap
| .
Data 5 Data ses Data
__Code | : |\ Code —Code
Saved Saved Saved
registers . registers registers
CPU
Registers

+ Single processor executes multiple processes concurrently

" Process executions interleaved, CPU runs one at a time

= Address spaces managed by virtual memory system (later in course)

= Execution context (register values, stack, ...) for other processes saved in
memory 28
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Multiprocessing

Memory
Stack Stack
Heap Heap
Data . Data coo
Code Code
Saved - Saved
Aegisters ; registers

Stack

Heap

Data

Code

Saved
registers

—4t
N

\egisters

1) Save current registers in memory

29
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Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data 00 Data
Code : Code : Code
Saved Saved Saved
registers : registers . registers
[ cpu
Registers

+» Context switch
1) Save current registers in memory
2) Schedule next process for execution (0S decides)

30
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Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data 00 Data
Code : Code : Code
Saved : < Saved
registers registers registers

CPU

Registers

—1

+ Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

31
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Multiprocessing: The (Modern) Reality

----------------

Memory
Stack Stack Stack
Heap Heap Heap
: Data Data ces Data
: Code Code Code
Saved Saved Saved
: registers registers registers
[ PV CPU— 1« Multicore processors
| |_Registers Registers | |- = Multiple CPUs (“cores”) on single chip

= Share main memory (and some of the
caches)

= Each can execute a separate process
- Kernel schedules processes to cores
- Still constantly swapping processes

32
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—

Assume only one CPU

Concurrent Processes

+ Each process is a logical control flow

+» Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

" Otherwise, they are sequential

+» Example: (running on single core)
" Concurrent: A&B,A&C

= Sequential: B&C Process A Process B Process C
ot
B _I— S‘f'ar’-TB =5
. A ( ? S.L A+
time

K \OPB Star e
C (J’:\ v
- |V ‘JA
(4’.\ n

33
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Assume only one CPU

User’s View of Concurrency

+ Control flows for concurrent processes are physically
disjoint in time

" CPU only executes instructions for one process at a time

+» However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C Process A Process B Process C
User View 3
()]
£ —} § TN
i)
) //
/ LA
our wminds il

these in
34
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Assume only one CPU

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user

process
|-.=-| T Me.n!ory
Kernel virtual memory invisible to
OxFFFF FFFF FFFF e user code
+ |n x86-64 Linux: (created at run time) _
7 %rsp (stack pointer)
= Same address in each process X

refers to same Shared Memory mapped region for
i hared librari
memory location shared libraries

I

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000
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Assume only one CPU

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user
process

+ Context switch passes control flow from one process to
another and is performed using kernel code

Process A Process B

user code
B; sl kernel code } context switch
time D
user code

kernel code } context switch

user code

36
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Processes

+» Processes and context switching

+» Creating new processes
= fork(),exec*(),andwait()

« Zombies

37
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Creating New Processes & Programs

r

Process 1

“Memory”

Stack

Heap

Data

-

fork()

Code

IICPUII

Registers

Process 2

“Memory”

Stack

Heap

Data

Code

IICPUH

Registers

exec*()

Chrome.exe

CSE351, Spring 2020

38
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Creating New Processes & Programs

+ fork-exec model (Linux):
= fork() creates a copy of the current process

= exec®() replaces the current process’ code and address
space(with the code for a different program
- Family: execy, execl, execve, execle, execvp, execlp

= (Fork ()l andjexecve () are system calls

L ]rv‘ev\‘Hov\c\\, SYh(.\'\YOV\O\AS exce(ﬁ"‘ons -:?

% Other system calls for process management:
" getpid()
= exit()
= wairt(),wartpid()

39
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fork: Creating New Processes

pid t Fork(void)

= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

= Returns 0 to the child process

—_—

= Returns child’s process ID (PID) to the parent process

« Child is almost identical to parent:

" Child gets an identical id_t pid = forkQ;
(but separate) copy of the gif (pld = 0) {// )4
parent’s virtual address printf("*hello from child\n");
space } else {/pavent

= Child has a different PID printf(""hello from parent\n');
than the parent ¥

+» TFork s unique (and often confusing) because it is called once
but returns “twice”

40
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Understanding Tork()

»

Process X (parent; PID X)

pid_t fork ret = fork(Q);
iIT (fork _ret 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');
+

fork
N>

»

Process Y (child; PID Y)

pid_t fork ret = fork();
iIfT (fork _ret == 0) {
printf("*hello from child\n");
} else {
printf("*hello from parent\n');
+

41
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Understanding Tork()

»

Process X (parent; PID X)

pid_t fork ret = fork(Q);
iIT (fork _ret 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');

+

fork ret }/Y}
pid_t fork ret = fork(Q); ~
iIT (fork ret == 0) {

printf("'hello from child\n');

} else {
printf("'hello from parent\n');

}

L20: Processes

»

»

CSE351, Spring 2020

Process Y (child; PID Y)—

pid_t fork ret = fork();
iIfT (fork _ret == 0) {
printf("*hello from child\n");
} else {
printf("*hello from parent\n');

+

fork ret=0_
pid_t fork ret = fork(Q); -
iIT (fork ret == 0) {

printf(*"hello from child\n™);

} else {
printf("'hello from parent\n');
¥

42
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Understanding Tork()

Process X (parent; PID X)

» pid t fork ret = fork();
iIT (fork ret == 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');

}

fork ret=Y

pid_t fork ret = fork(Q);

iIT (fork ret == 0) {
printf(""hello from child\n");

} else {

» printf(""hello from parent\n');
}

hello from parent

L20: Processes

CSE351, Spring 2020

Process Y (child; PIDY)

»

pid_t fork ret = fork();
iIfT (fork _ret == 0) {
printf("*hello from child\n");

} else {
printf("*hello from parent\n');
+

fork ret=0

pid_t fork_ret = fork(Q);
iIT (fork ret == 0) {
printf(*"hello from child\n");

} else {
printf("'hello from parent\n');

}

hello from child

Which one appears first?
Noh- dete rmi nistic 7

43
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Summary

<« Processes

= At any given time, system has multiple active processes

" On a one-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes

« Implemented using exceptional control flow

+ Process management
= fork: one call, two returns
= execve: one call, usually no return
= waltorwaltpid: synchronization
= ex1t: onecall, noreturn

44



