YW UNIVERSITY of WASHINGTON

Caches IV

CSE 351 Spring 2020

Instructor:
Ruth Anderson

O

Teaching Assistants:
Alex Olshanskyy
Connie Wang

Eddy (Tianyi) Zhou
Jonathan Chen

L19: Caches IV

Callum Walker
Diya Joy
Eric Fan
Joseph Schafer

CSE351, Spring 2020

Chin Yeoh

Edan Sneh
Jeffery Tian
Melissa Birchfield

|

.

J&

Millicent Li Porter Jones Rehaan Bhimani
\WJHATS THiS? | HUH? T ALWAYS THOUGHT THE | HOW? YOURE ON | [SHOULD THE CORDBE | | WHAT IF SCMEDNE TRiIFS oW IT7

CLOUD WhS A HUGE, AMORPHOUS | A (PBLE MODEM, | | STRETCHED ACRDSS WHO WOULD WJANT To DO THAT?
NETWORK, OF SERVERS SOMEWHERE. / THE ROOM LIKE THIST (IT S0UNDS UMPLEASANT.

OF CoURE. IT | | UH. SOMETIMES PECRE (

THE CLovD. YEPH, BUTEVERYONE BXS |27 THERES A LOT HAS TOREACH | | DO STUFF BY ACCIDENT.

K‘ SERVER TiME FROM EVERYONE |~ OF CACHING., THE SERVER, T DONT THINK
‘ ElSE. IN THE END, THEYRE AND THE SERVER S T KNOW ANYEODY
3 ALL GETTNG T HERE, 15 (VER THERE. LIKE. THAT,

O O)

http://xkcd.com/908/

http://xkcd.com/908/

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Administrivia

+ Lab 3 due this Wednesday (5/13)

+» Lab 4 coming soon!
= Cache parameter puzzles and code optimizations

» You must log on with your @uw google account to access!!
" Google doc for 11:30 Lecture: https://tinyurl.com/351-05-11A
" Google doc for 2:30 Lecture: https://tinyurl.com/351-05-11B

https://tinyurl.com/351-05-11A
https://tinyurl.com/351-05-11B

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

What about writes?

» Multiple copies of data may exist:

= multiple levels of cache and main memory

» What to do on a write-hit?

= Write-through: write immediately to next level

= Write-back: defer write to next level until line is evicted (replaced)
Must track which cache lines have been modified (“dirty bit”)

)
’0

» What to do on a write-miss?

= Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy
- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

0’0

Typical caches:
= Write-back + Write allocate, usually
= Write-through + No-write allocate, occasionally

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Write-back, Write Allocate Example

Note: While unrealistic, this example assumes that all requests have
offset 0 and are for a block’s worth of data.

Valid Dirty Tag Block Contents
Cache: 1110 G OxBEEF
4

There is only one set in this tiny cache,
so the tag is the entire block number!

Block X
Memory: Num :
F 0xCAFE

G OxBEEF

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Write-back, Write Allocate Example

Not valid x86, just using block num instead
L offull byte address to keep the example simple

1) mov S$SOxFACE, (F)

Write Miss!
Valid Dirty Tag Block Contents
Cache: 1110 G OxBEEF
Step 1: Bring F into
cache
Block X
Memory: Num :
F OxCAFE

G OxBEEF

YW UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov S$SOxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1110 F OxCAFE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit

YW UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov S$SOxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1] 11 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit

YW UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit!
Valid Dirty Tag Block Contents
Cache: 1] 11 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step: Write
OxFEED to cache
only (and set the
dirty bit)

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1] 11 F OXFEED
Block X
Memory: Num :
F OxCAFE

G OxBEEF

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov SOxFACE, (F) 2)mov S$SOxXFEED, (F) 3)mov (G), %ax

Write Miss Write Hit Read Miiss!
Valid Dirty Tag Block Contents
Cache: 1] 1|1 F OxXFEED

Step 1: Write F back
to memory since it

is dirty
Block X
Memory: Num :
F OxCAFE

G OxBEEF

10

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov SOxFACE, (F) 2)mov S$SOxXFEED, (F) 3)mov (G), %ax

Write Miss Write Hit Read Miss
Valid Dirty Tag Block Contents
Cache: 1110 G OxBEEF

Step 1: Write F back
to memory since it
is dirty

Block
Memory: Num Step 2: Bring G into
F OXFEED the cache so that

we can copy it into
Zax

G OxBEEF

11

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

+» Way to use:

= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions
= Self-guided Cache Sim Demo posted along with Section 6

= Will be used in hwl7 — Lab 4 Preparation

12

https://courses.cs.washington.edu/courses/cse351/cachesim/

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Polling Question [Cache IV]

+ Which of the following cache statements is FALSE?
= Vote at http://pollev.com/rea

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

http://pollev.com/rea

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Optimizations for the Memory Hierarchy

+ Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" Loop transformations

14

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Example: Matrix Multiplication

C A
ENEEEEEE SEEEEEEE
—ii> IR

]

HNEEEENE BEEE

HEEEEEEE BEEE
T

Cij = E :aik-bkj A«
k=1

X
HEEEEEEN

e i e s e e el

U
*

h.

15

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Matrices in Memory

«+ How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

16

L19: Caches IV

CSE351, Spring 2020

YW UNIVERSITY of WASHINGTON

Naive Matrix Multiply

for (3

1 < n;

:O;

Also read &

move along rows of A

for (1 = 0;
move along columns of B

j < n,; j-l--l-)

EACH k loop reads row of A,

i++)

col of B

write c(i1,7]) n times

for (k = 0; k < n; k++)

cli*n+]] += al[i*n+k] * bl[k*n+3];
C(i,j) C(i,j) Ai,:)

0 — | N 4 o | WNB(.j)

17

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Naive) ['gno””gJ

matrix c

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B=8 doubles

" Cachesize C < n (much smaller than n)

«» Each iteration:

1
X

n on .
" — 4+ 1 = —misses
8 8

18

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Naive) ['gno””gJ

matrix c

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B=8 doubles

" Cachesize C < n (much smaller than n)

«» Each iteration:
on = X
= E+n =—nm|sses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
19

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Naive)

lgnoring
matrix c

J

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache blocksize K =64 B =8 doubles

" Cachesize C < n (much smaller than n)

«» Each iteration:

on
- —+n —?mlsses

1
X

. n
«» Total misses: —

/'n

once per product matrix element

20

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+ Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

11 Qg2 Qg3 Aq47

a a a a A A . . .
A=t 22 C23 t2d -t 12], with B defined similarly.
31 Q3zz Q33 A3y A,y Ay,

Ayq Ayp g3z Qyg.
(A11By1 + A12B51) (A11B12 + 413B5,)
(A31By1 + A53B51) (A31B12 + 45,B5,)

AB=[

21

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

This is extra
Linear Algebra to the Rescue (2) [(non-testabla]

material

Cll C12 C13 C14 All A12 A13 A14 Bll BlZ BlS B14

C21 C22 C23 C24 A21 A22 A23 A24 BZl B22 BZ3 B24

C3l C32 C43 C34 A31 A32 A33 A34 BSZ B32 BSS B34

C4l C42 C43 C44 A41 A42 A43 Al44 B41 B42 B43 B44

Matrices of size n X n, split into 4 blocks of size r (n=4r)
Coy = AyiBiy + AyBoy + ApsBay + AyyByy = 24 Ay *By,

+» Multiplication operates on small “block” matrices
" Choose size so that they fit in the cache!
= This technique called “cache blocking”

22

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

move by rxr BLOCKS now
for (1 = 0; 1 < n; 1 += r)
for (J = 0; J < n;] += r)
for (k = 0; k < n; k += 1)
block matrix multiplication
for (ib = 1; 1ib < i+r; 1ib++)
for (jb = J; Jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)
c[ib*n+jb] += al[ib*n+kb]*b[kb*n+jb];

" r = block matrix size (assume r divides n evenly)

23

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Blocked) ['gno””gJ

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

r? elements per block, 8 per cache block n/r)blocks

'd N\

R Each/b/lock iteration: W HEEEN
= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

X

24

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Blocked) ['gno””g]

matrix c

« Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

r? elements per block, 8 per cache block n/r)blocks

'd N\

R EacP)/b/Iock iteration: W HEEEN
= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

= Afterwards incache M EEEEN
(schematic)

X

1
X

25

CSE351, Spring 2020

YW UNIVERSITY of WASHINGTON L19: Caches IV

Cache Miss Analysis (Blocked)

<« Scenario Parameters:

" Cache block size K = 64 B = 8 doubles

" Cachesize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

r? elements per block, 8 per cache block

kX Each/b/lock iteration: M

= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

«» Total misses:
" nr/4 X (n/r)? =n3/(4r)

[

lgnoring
matrix c

X

n/r blocks
A
e N

26

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Matrix Multiply Visualization

+» Heren =100, C =32 KiB, r =30
Naive:

Blocked:

Cache misses: 551888

_
Cache misses: 54,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

27

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache-Friendly Code

+» Programmer can optimize for cache performance
®" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”
" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.
= Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)

- Use small strides (spatial locality)
- Focus on inner loop code

28

YA UNIVERSITY of WASHINGTON L19: Caches IV

Core i7 Haswell
- 2.1 GHz
The Memory MOuntaln 32 KB L1 d-cache
256 KB L2 cache

Aggressiye 8 MB L3 cache
prefetching . 64 B block size
16000 ’ ‘—

— 14000 ;

™)

S 12000 -

§

€ 10000 — -

=2

(]

ﬁ 8000 - = ‘ Ridges

g cooo \ ". ? of temporal

locality
A
4000
2000 A~
Slopes = .
. / 0
of spgt/a <1 32k
locality c1ok 128k
2m
. 8m
Stride (x8 bytes) s9 ' Size (bytes)
11 32m
128m

29

CSE351, Spring 2020

YW UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Example: cat /sys/devices/system/cpu/cpu0/cache/index*/size
+~ Windows:
" wmic memcache get <query> (all valuesin KB)

" Example: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

30

http://www.7-cpu.com/

