WA UNIVERSITY of WASHINGTON

Caches IV

CSE 351 Spring 2020

Instructor:
Ruth Anderson

O

Teaching Assistants:
Alex Olshanskyy
Connie Wang

Eddy (Tianyi) Zhou
Jonathan Chen

L19: Caches IV

Callum Walker
Diya Joy
Eric Fan
Joseph Schafer

CSE351, Spring 2020

Chin Yeoh

Edan Sneh
Jeffery Tian
Melissa Birchfield

|

.

Millicent Li Porter Jones Rehaan Bhimani
WHATS THIS? | HUH? T ALWAYS THOUGHT THE | HOW? YOURE ON | | SHOULD THE CORDBE | | WHAT IF SOMEONE TRiFS oN IT7

CLOUD WhS A HUGE, AMORPHOUS | A (PBLE MODEM, | | STRETCHED ACRDSS WHO WOULD WJANT To DO THAT?
NETWORK, OF SERVERS SOMEWHERE. THE ROOM LIKE THIST (IT SOUNDS UNPLERSANT.

OF CouRe. IT | | UH. SOMETIMES PEORE (

THE CLOUD. YEPH, BUT EVERTONE BYS |2 THERES A LOT HAS TOREACH | | DO STUFF BY ACCIDENT.

\‘ SERVER TiME FROM EVERDNE |~ OF CACHING, THE SERVER, T DONT THINK
‘ ELSE. IN THE END, THEYRE AND THE SERVER S T KNOW ANYEODY
3 ALL GETTNG T HERE, IS OVER THERE. LIKE. THAT,

O O)

J&

http://xkcd.com/908/

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Administrivia

+» Lab 3 due this Wednesday (5/13)
% Lab 4 coming soon!

" Cache parameter puzzles and code optimizations

» You must log on with your @uw google account to access!!
" Google doc for 11:30 Lecture: https://tinyurl.com/351-05-11A
" Google doc for 2:30 Lecture: https://tinyurl.com/351-05-11B

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

What about writes?

Multiple copies of data may exist:

= multiple levels of cache and main memory
What to do on a write-hit? (bl /dda alvesdy T $)

= Write- through write immediately to next level

J
0‘0

X

= Write- back defer write to next level until line is evicted (replaced)

U rer
- Must track which cache lines have been modified (“dirty bit”) < ta :‘.\, "‘f,,"“gfqe_;(k

. . _ Cach@
What to do on a write-miss? (Wock dra not Currently in $)

= Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy

X

« Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

*

Typical caches:

* Write-back + Write allocate, usually <X

= Write-through + No-write allocate, occasionally

0

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

hiy miss
Write-back, Write Allocate Example

Note: While unrealistic, this example assumes that all requests have
offset 0 and are for a block’s worth of data.

irty Tag Block Contents

Cache: 1| [o G (QRBEEE%
4

There is only one set in this tiny cache,

so the tag is the entire block number! nst dirty, so
thege Copies
Block - ére con sistent
Memory: Num :
F OxCAFE

G | [COXBEEF>

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

hiy miss
Write-back, Write Allocate Example

Not valid x86, just using block num instead
4 offull byte address to keep the example simple

1) mov $OXFACE, (F)

Write Miss!
Valid Dirty Tag Block Contents
E {EZ: ACE
Cache: 1{|1] [G | OxBEE‘I(:\
@)ﬁ;‘: Step 1: Bring F into
cache

Block X

Memory: Num :
F OxXCAFE

G OxBEEF

WA UNIVERSITY of WASHINGTON

L19: Caches IV

hiy miss
Write-back, Write Allocate Example

1) mov $O0xFACE, (F)
Write Miss

Valid Dirty Tag

@ write data
i\f\‘l’O b‘ock

Block Contents

1

Cache: 1) @] [F

ﬁpxé:

Block
Memory: Num

OxBEEF

CSE351, Spring 2020

Step 1: Bring F into
cache

Step 2: Write
OXFACE to cache
only and set the
dirty bit

WA UNIVERSITY of WASHINGTON

hiy miss

L19: Caches IV

CSE351, Spring 2020

Write-back, Write Allocate Example

1) mov $OXFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1| |1 F OxXFACE
Block X
Memory: Num :
F OxCAFE
G

OxBEEF

Step 1: Bring F into
cache

Step 2: Write
OXFACE to cache
only and set the
dirty bit

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

hiy miss
Write-back, Write Allocate Example

1) mov $OxXFACE, (2) mov $OXFEED, (F)

Write Miss Write Hit! write dato
|’h+b b’o(k
Valid Dirty Tag Block Contents
/ h O xFE
Cache: 1] |x ! F OXEACE
/
Step: Write
OXFEED to cache
only (and set the
Block . dirty bit)
Memory: Num :
F OxXCAFE

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

hiy miss
Write-back, Write Allocate Example

1) mov $OxXFACE, (F) 2)mov $OXFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1] 11 F OXFEED
Block X
Memory: Num :
F OxXCAFE

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

Write-back, Write Allocate Example
N

1) mov $O0xFACE, (F) 2)mov $OXFEED, (F) 3)mov (G), %ax

Write Miss Write Hit Read Miss!
Valid Dirty Tag Block Contents
Cache: 1] | F OXFEED
/
0 evicted blOCk S 1: Wri F b k
wos diehy tep 1: Write F bac
to memory since it
is dirty
Block X
Memory: Num k) : O«FEED

F OXCAFE

G OxBEEF

10

WA UNIVERSITY of WASHINGTON

Write-back, Write Allocate Ex

1) mov $OxXFACE, (F) 2)mov $OXFEED, (F

Write Miss

L19: Caches IV

CSE351, Spring 2020

Prex [

-

Write Hit

Valid Dirty Tag Block Cont? S
Cache: 1| |0 G (OXBEE
{IL ¥jk
new Buck is
ConsisTort uith ®lood new
""e"""")/ ‘vlock
Block X
Memory: Num :
F OxXFEED
G (OxXBEEF '2

3o ax

ple

3)mov (G), %ax

Read Miss

@ CD()V into

Step 1: Write F back
to memory since it
is dirty

Step 2: Bring G into
the cache so that
we can copy it into
%ax

11

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

+» Way to use:

= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions

" Self-guided Cache Sim Demo posted along with@
= Will be used in hwl7 — Lab 4 Preparation

_

12

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Polling Question [Cache IV]

+» Which of the following cache statements | SE?
= \ote at http://pollev.com/rea

IWe can reduce compulsory misses by decreasing
our block size smaller blode size pulls fouer byfes ids §

B.

On & ™SS

We can reduce conflict misses b\Lincreasing
associativity "° options 1o place otks before
eunictions oG

A write-back cache will save time for code with

. . frequently-uged blocks rarel
good temporal locality on writes i «;ts, ls Feoer orfe—buck s ’

A write-through cache will always match data

\Es, s ma i

with the memory hierarchy level below itgwl 5 ddla

¢ sT C
We’re lost... Y4

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

Optimizations for the Memory Hierarchy

+» Write code that has locality!
patial: access data contiguously

[|
= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?
= Adjust memory accesses in code (software) to improve miss

rate (MR)
- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm

" Loop transformations

14

o
I
o
N
(®)]
=
S
n
—
0
™
L
)]
(@)

L19: Caches IV

WA UNIVERSITY of WASHINGTON

Matrix Multiplication

Example

E‘
I

O T

15

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

Matrices in Memory

«» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —

among cache blocks shown in red
16

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Naive Matrix Multiply atex AN

move along rows of A
for (1 = 0; 1 < n; 1++)
move along columns of B
for (J =0; J < n; jJ++t)
EACH k loop reads row of A, col of B
Also read & write c(1,jJ) n times
for (k = 0; k < n; k++)
c[i*nfj](::)a[i*n+k] * b[k*n+j}];

BUAe (L™ @ Read ® Reod 6>Rend.

Cl(i,j C(i,j) Ali,:)
-
U] = AT y (W

17

WA UNIVERSITY of WASHINGTON L19: Caches IV

CSE351, Spring 2020

Cache Miss Analysis (Naive) ['3”0“”8]

matrix C

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles

" Cache block size K =64 B=8 doubles 4—)% ke elemenTs per

Ck()’\(o IOIOC\’\
<% Cache size C < n (much smaller than n)
key GSIU\M[) h)"\ C

To e el g‘”\mc A 2

1234
D 1= ooy

+» Each |terat|on: L\
A B
on

o —+n——m|sses
8 8

mMp\A\sory/—\d | (D‘@ J ‘9\/ ‘H\e"'ime Mj-d'—L\)
A b gl MM AHHHAH (@] | ml, Hod hw been
j(ad'\o\l (om\rfy ’O&IQ)W?)]‘ l | ,l | daen >|CX [kiked onr of $
S‘(‘Ho\e‘l 8@1 - l
d@r"__(18

1
X

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

matrix C

Cache Miss Analysis (Naive) ['3”0“”8]

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B=8 doubles

" Cache size € LK n (much smaller than n) {—\Y

« Each iteration: ©
on X
X L

n .
" — 4+ n =—misses
8 8

#_

= Afterwards in cache:

(schematic) |
redc SLow"‘()
Hc(,\gs remw\ivx
inthe P 0 8 doubles wide

19

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Naive) ['8n0fing]

matrix C

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
" Cache block size K =64 B=8 doubles

" Cachessize C < n (much smaller than n)

« Each iteration:

on
- —+n = — misses
8 8

1
X

. TL
« Total misses: —

/'||

once per product matrix element
20

WA UNIVERSITY of WASHINGTON L19: Caches IV

CSE351, Spring 2020

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

% Can get the same result of a matrix multiplication by

splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:
Al\ A\L

ay; @zl Gz Gy4
_ |921_ Q21923 Qa4 _ [An Ay
A31 ~ U377 (33" Q34| |A,, Ay
Ay Qgp LaﬁA_ Ayq

], with B defined similarly.

2l

AB = [(AllBll +A12B21) (A11B12 2 AlZBZZ)
(A21Bll +A22821) (A21812 + A22B22)

21

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

material

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

AN
\C13 C14 %\Alzﬁ Ali A14_ Bl BlZ BlS B14
‘ /ﬁZB C24 + Agl / i 2 A24 a BZl 2 //823 B24
C43 C34 g A31 A32 A33 A34 BBZ \3 B33 B34
C41 C42 C43 C44 A41 A42 A43 A144 B41 4 B43 B44

Matrices of size n X n, split into 4 blocks of size r (n=4r)

C,, =A, B, +AB,, + AyByy +A,,B,, = 24 A B,

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called [“cache blocking’\ vt

22

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

0\\’ Seen

Blocked Matrix Multiply L opested P

,\, W \e(»dl

]eS) G’H AA ,{‘adef (Qo‘f’
+ Blocked version of the naive algorithm: + ~*

move by rxr BLOCKS now |ovping onfr—
for (i = 0; i <n; i +=7r) onhit -
for 3 = 0; j <n; j +=) loop ower Blode | YR
for (k = 0; k < n; k += r) AGRATEe S &2 had,

block matrix multiplication

for (ib = i; ib < i+r; ib++) lo
logp within i
P for (jb = j; jb < j+r; jb++) o~
H“k“““wfl for (kb = k; kb < k+r; kb++) S
c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb]; ii)bl\:t

" 1 = block matrix size (assume r divides n evenly)

23

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Blocked) ['gnofing]

matrix C

« Scenario Parameters:
® Cache block size K =64 B = 8 doubles

bl it ;
r*elements per bl%r@che bIockJ\N

x Each/block iteration: ()

= 2 /8 misses per block — X
" 2n/r Xr?/8 =nr/4

n/r blocks in row and column

24

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Cache Miss Analysis (Blocked) ['3”0””8]

matrix C

+» Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

/r2 elements per block, 8 per cache block rn/erlOCk':
2 Each/block iteration: M HEEREN —
= 2 /8 misses per block = X .
" 2n/r X r?/8 = nr/4 —

n/r blocks in row and column

= Afterwards in cache] HEREE
(schematic)

1
X

25

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L19: Caches IV

Cache Miss Analysis (Blocked)

<« Scenario Parameters:

" Cache block size K = 64 B = 8 doubles

" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

r2 elements per block, 8 per cache block

X Each/b/lock iteration: M

= r2/8 misses per block
" 2n/r Xr?/8 =nr/4

n/r blocks in row and column

« Total misses:
" nr/4 X (n/r)2 =n3/(4r)

|

lgnoring
matrix C

X

n/r blocks
A
r ~N

26

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2020

Matrix Multiply Visualization

+» Heren =100, C =32 KiB, r =30
A Naive: C

Blocked:

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

27

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized
" How data are accessed
« Nested loop structure
« Blocking is a general technique
+ All systems favor “cache-friendly code”
" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.
\ 2 — . .
= Can get most of theadvantage with generic code
- Keep working set reasonably small (temporal locality)

» Use small strides (spatial locality)
« Focus on inner loop code

28

CSE351, Spring 2020

L19: Caches IV

W UNIVERSITY of WASHINGTON
Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

The Memory Mountain

Aggressive o
prefetching 64 B block size
16000
o
S_ 14000
52 12000
&<l 10000 LI § gize exceeded
=
o T—
£ 8000 Ridaes
3 ¥ g
5 S -of temporal
£ ~locality

—_—

29

WA UNIVERSITY of WASHINGTON L19: Caches IV CSES351, Spring 2020

Learning About Your Machine

<+ Linux:
= Iscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Example: cat /sys/devices/system/cpu/cpuO/cache/index*/size
+» Windows:
= wnic memcache get <query> (all valuesin KB)
= Example: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

30

