
CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflows
CSE 351 Spring 2020
Instructor: Teaching Assistants:

Ruth Anderson Alex Olshanskyy Callum Walker Chin Yeoh

Connie Wang Diya Joy Edan Sneh

Eddy (Tianyi) Zhou Eric Fan Jeffery Tian

Jonathan Chen Joseph Schafer Melissa Birchfield

Millicent Li Porter Jones Rehaan Bhimani

http://xkcd.com/2291/

http://xkcd.com/2291/

CSE351, Spring 2020L15: Buffer Overflows

Administrivia

 Lab 2 (x86-64) due TONIGHT, Friday (5/01)
 Since you are submitting a text file (defuser.txt), there

won’t be any Gradescope autograder output this time

 Extra credit needs to be submitted to the extra credit
assignment

 Unit Summary #2, due Friday (5/08)

 Lab 3 coming soon!

 You will have everything you need by the end of this lecture

 You must log on with your @uw google account to access!!
 Google doc for 11:30 Lecture: https://tinyurl.com/351-05-01A

 Google doc for 2:30 Lecture: https://tinyurl.com/351-05-01B

2

https://tinyurl.com/351-05-01A
https://tinyurl.com/351-05-01B

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflows

 Address space layout (more details!)

 Input buffers on the stack

 Overflowing buffers and injecting code

 Defenses against buffer overflows

3

CSE351, Spring 2020L15: Buffer Overflows

Review: General Memory Layout

 Stack

 Local variables (procedure context)

 Heap

 Dynamically allocated as needed

 malloc(), calloc(), new, …

 Statically allocated Data
 Read/write: global variables (Static Data)

 Read-only: string literals (Literals)

 Code/Instructions

 Executable machine instructions

 Read-only

4

not drawn to scale

Instructions

Literals

Static Data

Heap

Stack

0

2N-1

CSE351, Spring 2020L15: Buffer Overflows

x86-64 Linux Memory Layout

 Stack

 Runtime stack has 8 MiB limit

 Heap

 Dynamically allocated as needed

 malloc(), calloc(), new, …

 Statically allocated data (Data)
 Read-only: string literals

 Read/write: global arrays and variables

 Code / Shared Libraries

 Executable machine instructions

 Read-only

5

Hex Address

0x00007FFFFFFFFFFF

0x000000

0x400000

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

This is extra (non-testable) material

CSE351, Spring 2020L15: Buffer Overflows

Memory Allocation Example

6

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

void *p1, *p2, *p3, *p4;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

p3 = malloc(1L << 32); /* 4 GB */

p4 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

not drawn to scale

Where does everything go?

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

CSE351, Spring 2020L15: Buffer Overflows

Memory Allocation Example

7

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()

{

void *p1, *p2, *p3, *p4;

int local = 0;

p1 = malloc(1L << 28); /* 256 MB */

p2 = malloc(1L << 8); /* 256 B */

p3 = malloc(1L << 32); /* 4 GB */

p4 = malloc(1L << 8); /* 256 B */

/* Some print statements ... */

}

not drawn to scale

Where does everything go?

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

CSE351, Spring 2020L15: Buffer Overflows

What Is a Buffer?

 A buffer is an array used to temporarily store data

 You’ve probably seen “video buffering…”

 The video is being written into a buffer before being played

 Buffers can also store user input

8

CSE351, Spring 2020L15: Buffer Overflows

Reminder: x86-64/Linux Stack Frame

 Caller’s Stack Frame
 Arguments (if > 6 args) for this call

 Current/ Callee Stack Frame
 Return address

• Pushed by call instruction

 Old frame pointer (optional)

 Caller-saved pushed before setting up
arguments for a function call

 Callee-saved pushed before using
long-term registers

 Local variables
(if can’t be kept in registers)

 “Argument build” area
(Need to call a function with >6
arguments? Put them here)

9

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7, 8, …

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

Lower Addresses

Higher Addresses

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow in a Nutshell

 C does not check array bounds

 Many Unix/Linux/C functions don’t check argument sizes

 Allows overflowing (writing past the end) of buffers (arrays)

 “Buffer Overflow” = Writing past the end of an array

 Characteristics of the traditional Linux memory layout
provide opportunities for malicious programs

 Stack grows “backwards” in memory

 Data and instructions both stored in the same memory

10

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow in a Nutshell

 Stack grows down towards lower
addresses

 Buffer grows up towards higher
addresses

 If we write past the end of the
array, we overwrite data on the
stack!

11Lower Addresses

buf[0]

buf[7]

'\0'

'o'

'l'

'l'

'e'

'h'

Enter input: hello

00

00

00

00

00

40

dd

bf

Return
Address

Higher Addresses

No overflow

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow in a Nutshell 00

00

00

00

00

40

dd

bf

 Stack grows down towards lower
addresses

 Buffer grows up towards higher
addresses

 If we write past the end of the
array, we overwrite data on the
stack!

12Lower Addresses

Higher Addresses

buf[0]

buf[7]

Return
Address

Enter input: helloabcdef

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow in a Nutshell 00

00

00

00

'\0'

'f'

'e'

'd'

 Stack grows down towards lower
addresses

 Buffer grows up towards higher
addresses

 If we write past the end of the
array, we overwrite data on the
stack!

13Lower Addresses

Higher Addresses

buf[0]

buf[7] 'c'

'b'

'a'

'o'

'l'

'l'

'e'

'h'

Return
Address

Enter input: helloabcdef

Buffer overflow!

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow in a Nutshell

 Buffer overflows on the stack can overwrite
“interesting” data

 Attackers just choose the right inputs

 Simplest form (sometimes called “stack smashing”)

 Unchecked length on string input into bounded array causes
overwriting of stack data

 Try to change the return address of the current procedure

 Why is this a big deal?

 It was the #1 technical cause of security vulnerabilities
• #1 overall cause is social engineering / user ignorance

14

CSE351, Spring 2020L15: Buffer Overflows

String Library Code

 Implementation of Unix function gets()

 What could go wrong in this code?

15

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

pointer to start
of an array

same as:
*p = c;

p++;

CSE351, Spring 2020L15: Buffer Overflows

String Library Code

 Implementation of Unix function gets()

 No way to specify limit on number of characters to read

 Similar problems with other Unix functions:
 strcpy: Copies string of arbitrary length to a dst

 scanf, fscanf, sscanf, when given %s specifier
16

/* Get string from stdin */

char* gets(char* dest) {

int c = getchar();

char* p = dest;

while (c != EOF && c != '\n') {

*p++ = c;

c = getchar();

}

*p = '\0';

return dest;

}

CSE351, Spring 2020L15: Buffer Overflows

Vulnerable Buffer Code

17

void call_echo() {

echo();

}

/* Echo Line */

void echo() {

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

unix> ./buf-nsp

Enter string: 123456789012345

123456789012345

unix> ./buf-nsp

Enter string: 12345678901234567

Segmentation Fault

unix> ./buf-nsp

Enter string: 1234567890123456

Illegal instruction

CSE351, Spring 2020L15: Buffer Overflows

0000000000400597 <echo>:

400597: 48 83 ec 18 sub $0x18,%rsp

... ... calls printf ...

4005aa: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi

4005af: e8 d6 fe ff ff callq 400480 <gets@plt>

4005b4: 48 89 7c 24 08 lea 0x8(%rsp),%rdi

4005b9: e8 b2 fe ff ff callq 4004a0 <puts@plt>

4005be: 48 83 c4 18 add $0x18,%rsp

4005c2: c3 retq

Buffer Overflow Disassembly (buf-nsp)

18

00000000004005c3 <call_echo>:

4005c3: 48 83 ec 08 sub $0x8,%rsp

4005c7: b8 00 00 00 00 mov $0x0,%eax

4005cc: e8 c6 ff ff ff callq 400597 <echo>

4005d1: 48 83 c4 08 add $0x8,%rsp

4005d5: c3 retq

call_echo:

echo:

return address

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow Stack

19

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

Before call to gets

Stack frame for
call_echo

Return address
(8 bytes)

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

Note: addresses increasing right-to-left, bottom-to-top

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow Example

20

void echo()

{

char buf[8];

gets(buf);

. . .

}

. . .

4005cc: callq 400597 <echo>

4005d1: add $0x8,%rsp

. . .

call_echo:

Before call to gets

Stack frame for
call_echo

00 00 00 00

00 40 05 d1

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow Example #1

21

unix> ./buf-nsp

Enter string: 123456789012345

123456789012345

Overflowed buffer, but did not corrupt state

Stack frame for
call_echo

00 00 00 00

00 40 05 d1

00 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

call_echo:

After call to gets

Note: Digit “𝑁” is
just 0x3𝑁 in ASCII!

void echo()

{

char buf[8];

gets(buf);

. . .

}

. . .

4005cc: callq 400597 <echo>

4005d1: add $0x8,%rsp

. . .buf

⟵%rsp

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow Example #2

22

unix> ./buf-nsp

Enter string: 1234567890123456

Illegal instruction

Overflowed buffer and corrupted return pointer

call_echo:

After call to gets
void echo()

{

char buf[8];

gets(buf);

. . .

}

buf

⟵%rsp

Stack frame for
call_echo

00 00 00 00

00 40 05 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

. . .

4005cc: callq 400597 <echo>

4005d1: add $0x8,%rsp

. . .

echo:

subq $24, %rsp

...

leaq 8(%rsp), %rdi

call gets

...

CSE351, Spring 2020L15: Buffer Overflows

Buffer Overflow Example #2 Explained

23

00000000004004f0 <deregister_tm_clones>:

4004f0: push %rbp

4004f1: mov $0x601040,%eax

4004f6: cmp $0x601040,%rax

4004fc: mov %rsp,%rbp

4004ff: je 400518

400501: mov $0x0,%eax

400506: test %rax,%rax

400509: je 400518

40050b: pop %rbp

40050c: mov $0x601040,%edi

400511: jmpq *%rax

400513: nopl 0x0(%rax,%rax,1)

400518: pop %rbp

400519: retq

“Returns” to a byte that is not the beginning of an instruction,
so program signals SIGILL, Illegal instruction

⟵%rsp

After return from echo

buf

Stack frame for
call_echo

00 00 00 00

00 40 05 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

CSE351, Spring 2020L15: Buffer Overflows

Malicious Use of Buffer Overflow:
Code Injection Attacks

 Input string contains byte representation of executable code

 Overwrite return address A with address of buffer B

 When bar() executes ret, will jump to exploit code
24

int bar() {

char buf[64];

gets(buf);

...

return ...;

}

void foo(){

bar();

A:...

}

return address A

Stack after call to gets()

A (return addr)

foo

stack frame

bar

stack frame

B

data written
by gets()

High Addresses

buf starts here
exploit code

pad

Low Addresses

A B

CSE351, Spring 2020L15: Buffer Overflows

Peer Instruction Question [Buf]
 smash_me is vulnerable to stack smashing!

 What is the minimum number of characters that
gets must read in order for us to change the return
address to a stack address?

 Vote at http://PollEv.com/rea

 For example: (0x00 00 7f ff CA FE F0 0D)

25

Previous
stack frame

00 00 00 00

00 40 05 d1

. . .

[0]

smash_me:

subq $0x40, %rsp

...

leaq 16(%rsp), %rdi

call gets

...

A. 27
B. 30
C. 51
D. 54
E. We’re lost…

http://pollev.com/rea

CSE351, Spring 2020L15: Buffer Overflows

Exploits Based on Buffer Overflows

 Distressingly common in real programs

 Programmers keep making the same mistakes

 Recent measures make these attacks much more difficult

 Examples across the decades

 Original “Internet worm” (1988)

 Heartbleed (2014, affected 17% of servers)
• Similar issue in Cloudbleed (2017)

 Hacking embedded devices
• Cars, Smart homes, Planes

26

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

CSE351, Spring 2020L15: Buffer Overflows

Example: the original Internet worm (1988)

 Exploited a few vulnerabilities to spread
 Early versions of the finger server (fingerd) used gets()

to read the argument sent by the client:
• finger droh@cs.cmu.edu

 Worm attacked fingerd server with phony argument:
• finger "exploit-code padding new-return-addr"

• Exploit code: executed a root shell on the victim machine with a
direct connection to the attacker

 Scanned for other machines to attack

 Invaded ~6000 computers in hours (10% of the Internet)
• see June 1989 article in Comm. of the ACM

 The author of the worm (Robert Morris*) was prosecuted…

27

http://dl.acm.org/citation.cfm?id=66095

CSE351, Spring 2020L15: Buffer Overflows

Example: Heartbleed

28

CSE351, Spring 2020L15: Buffer Overflows

Example: Heartbleed

29

CSE351, Spring 2020L15: Buffer Overflows

Example: Heartbleed

30

CSE351, Spring 2020L15: Buffer Overflows

Heartbleed (2014)

 Buffer over-read in OpenSSL
 Open source security library

 Bug in a small range of versions

 “Heartbeat” packet
 Specifies length of message

 Server echoes it back

 Library just “trusted” this length

 Allowed attackers to read contents
of memory anywhere they wanted

 Est. 17% of Internet affected
 “Catastrophic”

 Github, Yahoo, Stack Overflow,
Amazon AWS, ...

31

By FenixFeather - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32276981

CSE351, Spring 2020L15: Buffer Overflows

 UW CSE research from 2010 demonstrated wirelessly
hacking a car using buffer overflow

 Overwrote the onboard control system’s code

 Disable brakes

 Unlock doors

 Turn engine on/off

Hacking Cars

32

http://www.autosec.org/pubs/cars-oakland2010.pdf

CSE351, Spring 2020L15: Buffer Overflows

Dealing with buffer overflow attacks

1) Employ system-level protections

2) Avoid overflow vulnerabilities

3) Have compiler use “stack canaries”

33

CSE351, Spring 2020L15: Buffer Overflows

1) System-Level Protections

 Non-executable code segments

 In traditional x86, can mark
region of memory as either
“read-only” or “writeable”

 Can execute anything readable

 x86-64 added explicit “execute”
permission

 Stack marked as non-executable

 Do NOT execute code in Stack,
Static Data, or Heap regions

 Hardware support needed

34

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE351, Spring 2020L15: Buffer Overflows

1) System-Level Protections

 Non-executable code segments

 Wait, doesn’t this fix everything?

 Works well, but can’t always use it

 Many embedded devices do not
have this protection

 Cars

 Smart homes

 Pacemakers

 Some exploits still work!
 Return-oriented programming

 Return to libc attack

 JIT-spray attack

35

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE351, Spring 2020L15: Buffer Overflows

1) System-Level Protections

 Randomized stack offsets
 At start of program, allocate random amount

of space on stack

 Shifts stack addresses for entire program

• Addresses will vary from one run to another

 Makes it difficult for hacker to predict
beginning of inserted code

 Example: Code from Slide 6 executed 5
times; address of variable local =

• 0x7ffd19d3f8ac

• 0x7ffe8a462c2c

• 0x7ffe927c905c

• 0x7ffefd5c27dc

• 0x7fffa0175afc

 Stack repositioned each time program executes
36

main’s
stack frame

Other
functions’

stack frames

Random
allocation

B?

B?

exploit
code

pad

Low Addresses

High Addresses

CSE351, Spring 2020L15: Buffer Overflows

2) Avoid Overflow Vulnerabilities in Code

 Use library routines that limit string lengths
 fgets instead of gets (2nd argument to fgets sets limit)

 strncpy instead of strcpy

 Don’t use scanf with %s conversion specification
• Use fgets to read the string

• Or use %ns where n is a suitable integer

37

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

fgets(buf, 8, stdin);

puts(buf);

}

CSE351, Spring 2020L15: Buffer Overflows

2) Avoid Overflow Vulnerabilities in Code

 Alternatively, don’t use C - use a language that does
array index bounds check

 Buffer overflow is impossible in Java

• ArrayIndexOutOfBoundsException

 Rust language was designed with security in mind

• Panics on index out of bounds, plus more protections

38

CSE351, Spring 2020L15: Buffer Overflows

3) Stack Canaries

 Basic Idea: place special value (“canary”) on stack just
beyond buffer

 Secret value that is randomized before main()

 Placed between buffer and return address

 Check for corruption before exiting function

 GCC implementation
 -fstack-protector

39

unix>./buf

Enter string: 12345678

12345678

unix> ./buf

Enter string: 123456789

*** stack smashing detected ***

CSE351, Spring 2020L15: Buffer Overflows

Protected Buffer Disassembly (buf)

40

400607: sub $0x18,%rsp

40060b: mov %fs:0x28,%rax

400614: mov %rax,0x8(%rsp)

400619: xor %eax,%eax

... ... call printf ...

400625: mov %rsp,%rdi

400628: callq 400510 <gets@plt>

40062d: mov %rsp,%rdi

400630: callq 4004d0 <puts@plt>

400635: mov 0x8(%rsp),%rax

40063a: xor %fs:0x28,%rax

400643: jne 40064a <echo+0x43>

400645: add $0x18,%rsp

400649: retq

40064a: callq 4004f0 <__stack_chk_fail@plt>

echo:

This is extra
(non-testable)

material

CSE351, Spring 2020L15: Buffer Overflows

Setting Up Canary

41

echo:

. . .

movq %fs:40, %rax # Get canary

movq %rax, 8(%rsp) # Place on stack

xorl %eax, %eax # Erase canary

. . .

/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

Segment register
(don’t worry about it)

Before call to gets

This is extra
(non-testable)

material

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

[7][6][5][4]

[3][2][1][0] buf ⟵%rsp

CSE351, Spring 2020L15: Buffer Overflows

Checking Canary

42

echo:

. . .

movq 8(%rsp), %rax # retrieve from Stack

xorq %fs:40, %rax # compare to canary

jne .L4 # if not same, FAIL

. . .

.L4: call __stack_chk_fail

Input: 1234567

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

00 37 36 35

34 33 32 31

After call to gets
/* Echo Line */

void echo()

{

char buf[8]; /* Way too small! */

gets(buf);

puts(buf);

}

This is extra
(non-testable)

material

buf ⟵%rsp

CSE351, Spring 2020L15: Buffer Overflows

Summary of Prevention Measures

1) Employ system-level protections

 Code on the Stack is not executable

 Randomized Stack offsets

2) Avoid overflow vulnerabilities

 Use library routines that limit string lengths

 Use a language that makes them impossible

3) Have compiler use “stack canaries”

43

CSE351, Spring 2020L15: Buffer Overflows

Think this is cool?

 You’ll love Lab 3 😉

 Check out the buffer overflow simulator!

 Take CSE 484 (Security)

 Several different kinds of buffer overflow exploits

 Many ways to counter them

 Nintendo fun!

 Using glitches to rewrite code:
https://www.youtube.com/watch?v=TqK‐2jUQBUY

 Flappy Bird in Mario:
https://www.youtube.com/watch?v=hB6eY73sLV

44

https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV

CSE351, Spring 2020L15: Buffer Overflows

Extra Notes about %rbp

 %rbp is used to store the frame pointer

 Name comes from “base pointer”

 You can refer to a variable on the stack as
%rbp+offset

 The base of the frame will never change, so each
variable can be uniquely referred to with its offset

 The top of the stack (%rsp) may change, so referring
to a variable as %rsp-offset is less reliable

 For example, if you need save a variable for a function call,
pushing it onto the stack changes %rsp

45

This is extra
(non-testable)

material

