YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Structs & Alignment

CSE 351 Spring 2020

Instructor:
Ruth Anderson

Teaching Assistants:

CSE351, Spring 2020

Alex Olshanskyy
Rehaan Bhimani
Ca!lum Walker MAN, YOURE BEING INCONSISTENT
Chin Yeoh WITH YOUR ARRAY INDICES. SOME
Diya Joy ARE FROM ONE, S0ME FRom ZERD.
Eric Fan DIFFERENT TASks CALL FOR VAT WHAT?
Edan Sneh DIFFERENT CONVENTIONS. TO)
QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE
Jonathan Chen EXPERT DONALD KNUTH, SAID WHEN | ASKED
Jeffery Tian “\WHO ARE You? HOW DID Him ABOUT IT.
Millicent Li YOU GET IN MY HOUSE? /
Melissa Birchfield . / .
Porter Jones : y
Joseph Schafer
Connie Wang

Eddy (Tianyi) Zhou

http://xkcd.com/163/

http://xkcd.com/163/

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Administrivia

+» Mid-quarter survey due TONIGHT, (4/29) on Canvas
+» Lab 2 (x86-64) due Friday (5/01)
= Optional GDB Tutorial homework on Gradescope

= Since you are submitting a text file (defuser. txt), there
won’t be any Gradescope autograder output this time

= Extra credit needs to be submitted to the extra credit
assignment

- You must log on with your @uw google account to access!!
" Google doc for 11:30 Lecture: https://tinyurl.com/351-04-29A
" Google doc for 2:30 Lecture: https://tinyurl.com/351-04-29B

https://tinyurl.com/351-04-29A
https://tinyurl.com/351-04-29B

WA UNIVERSITY of WASHINGTON

Roadmap

L14: Structs & Alignment

C: Java:
car *c = malloc(sizeof (car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ;
c->gals = 17; c.setGals (17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG() ;
Assembly get mpg:
. pushq $rbp
Ianguage' movq $rsp, %rbp
PoPa srbp
ret *:
Machine 0111010000011000
code' 100011010000010000000010
) 1000100111000010
110000011111101000011111
Computer

system:

CSE351, Spring 2020

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Data Structures in Assembly

< Arrays
®" One-dimensional
® Multi-dimensional (nested)
=" Multi-level
+» Structs
= Alignment

YA UNIVERSITY of WASHINGTON

Structs in C

L14: Structs & Alignment

CSE351, Spring 2020

+» A structured group of variables, possibly including

other structs

" Way of defining compound data types

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

b

struct song songl;
songl.title = "Seflorita";
songl.lengthInSeconds = 191;
songl.yearReleased = 2019;

struct song song2;

songZ.lengthInSeconds = 193;
song?2.yearReleased = 2011;

p
struct song {
char *title;
int lengthInSeconds;
int yearReleased;

Y

song2.title = "Call Me Maybe";

\ S
songl
| title: "Sefilorita"
lengthInSeconds: 191
yearReleased: 2019
\ V.
song?2
title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011
\ V.

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Struct Definitions

« Structure definition:
struct name {

" Does NOT declare a variable /* fields */
" Variable type is “struct name” i<
—— Easy to forget
semicolon!

+ Variable declarations like any other data type:

struct name namel, *pn, name ar[3];

7 DN N

instance pointer array

« Can also combine struct and instance definitions:
= This syntax can be difficult to read, though

struct name {
/* fields */
} st, *p = &st;

YA UNIVERSITY of WASHINGTON

Typedefin C

L14: Structs & Alignment

+» A way to create an alias for another data type:
typedef <data type> <alias>;

= After typedef, the alias can be used interchangeably with

the original data type

" e.g. typedef unsigned long int uli;

+ Joint struct definition and typedef

" Don’t need to give struct a name in this case

struct nm {
/* fields */
I
typedef struct nm name;
name nl;

—

typedef struct {
/* fields */

} name;

name nl;

CSE351, Spring 2020

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Scope of Struct Definition

+» Why is the placement of struct definition important?

" What actually happens when you declare a variable?
- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |«— Size = bytes | struct rec {
int ar[4]; int a[4];
long d; long 1i;
}; struct rec* next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

CSE351, Spring 2020

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Accessing Structure Members

+ @iven a struct instance, access

member using the . operator: |struct rec {
int af4];
struct rec rl; long 1i;
rl.i = val; struct rec *next;
+» @Given a pointer to a struct: &
struct rec *r;
r = &rl; // or malloc space for r to point to
We have two options:
- Use * and . operators: (*r).i = val;
- Use —-> operator for short: r->i = val;

+~ In assembly: register holds address of the first byte

= Access members with offsets

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

class Record { ... }

java Side'nOte Record x = new Record() ;

+ An instance of a class is like a pointer to a struct
containing the fields

= (Ignoring methods and subclassing for now)
" SoJava’s x.f islikeC's x->f or (*x).f

+ In Java, almost everything is a pointer (“reference”) to
an object
" Cannot declare variables or fields that are structs or arrays
= Always a pointer to a struct or array

= So every Java variable or field is < 8 bytes (but can point to
lots of data)

10

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Structure Representation

struct rec { r
int af4];
long 1i;
struct rec *next; a 1 next
* = *
B, ¥IE &st; 0 16 24 32

+ Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
" Fields may be of different types

11

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Structure Representation

struct rec { r
int af4];
long 1i;
struct rec *next; a 1 next
* = *
B, ¥IE &st; 0 16 24 32

+ Structure represented as block of memory
= Big enough to hold all of the fields

+ Fields ordered according to declaration order

" Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

12

YA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {

int af[4];

long 1i;

struct rec *next;
} st, *r = &st;

+» Compiler knows the
offset of each member
within a struct

" Compute as
*(r+offset)
- Referring to absolute

offset, so no pointer
arithmetic

r—->1

next

0 16 24 32

long get i (struct rec *r)

{

return r—>1i;

}

r 1in %rdi, index in %rsi

movq
ret

16 (%rdi), %rax

CSE351, Spring 2020

13

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2020

Exercise: Pointer to Structure Member

struct rec { r
int af4];
long 1i; M
struct rec *next; a 1 next
* = *
B, ¥IE &st; 0 16 24 32

long* addr of i (struct rec *r)

{

r 1in %rdi

return & (r->next);

}

[©)
. srax
return & (r->1); 7o
} ret
struct rec** addr of next (struct rec *r) # r in %rdi
{
, srax

ret

14

YA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Generating Pointer to Array Element

struct rec {
int af[4];
long 1i;
struct rec *next;

} st, *r = &st;

« Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

T r+4*index
a 1 next
0 16 24 32

CSE351, Spring 2020

int* find addr of array elem
(struct rec *r, long index)

{

return &r—->al[index];

} N\

p]
& (r->a[index])

r 1n %rdi, index 1in $%rsi
leagq (%rdi,%rsi,4), %rax

ret

15

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Review: Memory Alignment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types:

1 char No restrictions
2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

16

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Alignment Principles

+» Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries

- Virtual memory trickier when value spans 2 pages (more on this later)

" Though x86-64 hardware will work regardless of alignment of
data

17

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Structures & Alignment

+» Unaligned Data struct S1 {
char c;
C 1[0] 1[1] v int 1[2];
double v;
} st, *p = &st;

p ptl p+5 p+9 p+17

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

C 1[0] 1[1] v

p+0 p‘+4\ p+8 p+16 p+24
Multiple of\Q Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

18

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2020

Satisfying Alignment with Structures (1)

= Within structure: struct S1 {
. o _ char c;

" Must satisfy each element’s alignment requirement s 4727 ¢

+ Overall structure placement double v;

} st, *p = &st;

= Each structure has alignment requirement K.«
« K,.x = Largest alignment of any element
« Counts array elements individually as elements

+» Example:

" Kmnax =8, due to double element

C 1[0] i[1] v
p+0 Ok 4 p+8 p+16 p+24
Multiple of\Q Multiple of 8

Multiple of 8 internal fragmentation o

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2020

Satisfying Alignment with Structures (2)

+ Can find offset of individual fields StzucltlSZ {
. ou e Vv,
using offsetof () oot 5L ¢
" Needto #include <stddef.h> char c;
= Example: of fsetof (struct S2,c) returns16 |} St *P = &stj

+ For largest alignment requirement K, ,x,
overall structure size must be multiple of K.«

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

Y% 1[0] 1[1] C
p+0 p+8 pt+16 p+24

a

Multiple of 8 external fragmentation Multiple of 8

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Arrays of Structures

CSE351, Spring 2020

. . struct S2
» Overall structure length multiple of K,;, 44 double v
+ Satisfy alignment requirement i;‘lt Ll2ls

. cnhar Cy;

for every element in array } ar10];

a[0] all] al2] oo

a+0 a+24 a+48 at+72
Y 1[0] 1[1] C

at+t48

a+24 a+32 a+40 /

external fragmentation

21

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= Qverall struct must be aligned according to largest field

" Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

22

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int i; - char c;
char d; char d;
} ost; } sty
C 1 d 1 cld

| |
12 bytes 8 bytes

23

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2020

Vote on sizeof (struct old):

Polling Question [Structs] http://pollev.com/rea

+» Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int 1i; int i;

short s[3];

’

float f; ;
b7 I 2

«+ What are the old and new sizes of the struct?

sizeof (struct old) =__ sizeof (struct new) =__
A
B. 22 bytes
C. 28 bytes
D. 32bytes
E. We'relost...

24

http://pollev.com/rea

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2020

Summary

+ Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes for fields in order declared by programmer

" Pad in middle to satisfy individual element alignment
requirements

" Pad at end to satisfy overall struct alignment requirement

25

