
CSE351, Spring 2020L07: Floating Point II

Floating Point II
CSE 351 Spring 2020

Instructor: Teaching Assistants:

Ruth Anderson Alex Olshanskyy Callum Walker Chin Yeoh

Connie Wang Diya Joy Edan Sneh

Eddy (Tianyi) Zhou Eric Fan Jeffery Tian

Jonathan Chen Joseph Schafer Melissa Birchfield

Millicent Li Porter Jones Rehaan Bhimani

http://xkcd.com/899/

http://xkcd.com/257/

CSE351, Spring 2020L07: Floating Point II

Administrivia

 Lab 1a due TONIGHT (4/13) at 11:59 pm
 Submit pointer.c and lab1Areflect.txt

 hw6 due Wednesday – 11am

 Lab 1b due Monday (4/20)
 Submit bits.c and lab1Breflect.txt

 You must log on with your @uw google account to access!!
 Google doc for 11:30 Lecture: https://tinyurl.com/351-04-13A

 Google doc for 2:30 Lecture: https://tinyurl.com/351-04-13B

 Week 2 Feedback Survey
 https://catalyst.uw.edu/webq/survey/rea2000/388285

2

https://tinyurl.com/351-04-13A
https://tinyurl.com/351-04-13B
https://catalyst.uw.edu/webq/survey/rea2000/388285

CSE351, Spring 2020L07: Floating Point II

Other Special Cases

 E = 0xFF, M = 0: ± ∞

 e.g. division by 0

 Still work in comparisons!

 E = 0xFF, M ≠ 0: Not a Number (NaN)

 e.g. square root of negative number, 0/0, ∞–∞

 NaN propagates through computations

 Value of M can be useful in debugging

 New largest value (besides ∞)?

 E = 0xFF has now been taken!

 E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

3

CSE351, Spring 2020L07: Floating Point II

Floating Point Encoding Summary

E M Meaning

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN

CSE351, Spring 2020L07: Floating Point II

Floating Point Interpretation Flow Chart

5

FP Bits
What is the
value of E?

What is the
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE351, Spring 2020L07: Floating Point II

Floating point topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
6

CSE351, Spring 2020L07: Floating Point II

Tiny Floating Point Representation

 We will use the following 8-bit floating point
representation to illustrate some key points:

 Assume that it has the same properties as IEEE
floating point:

 bias =

 encoding of −0 =

 encoding of +∞ =

 encoding of the largest (+) normalized # =

 encoding of the smallest (+) normalized # =

7

S E M

1 4 3

CSE351, Spring 2020L07: Floating Point II

Distribution of Values

 What ranges are NOT representable?

 Between largest norm and infinity

 Between zero and smallest denorm

 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next
largest representable number?

 What is this “step” when Exp = 0?

 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero

8

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

CSE351, Spring 2020L07: Floating Point II

Floating Point Rounding

 The IEEE 754 standard actually specifies different
rounding modes:

 Round to nearest, ties to nearest even digit

 Round toward +∞ (round up)

 Round toward −∞ (round down)

 Round toward 0 (truncation)

 In our tiny example:

 Man = 1.001 01 rounded to M = 0b001

 Man = 1.001 11 rounded to M = 0b010

 Man = 1.001 10 rounded to M = 0b010

9

This is extra
(non-testable)

material

S E M

1 4 3

CSE351, Spring 2020L07: Floating Point II

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:

 First, compute the exact result

 Then round the result to make it fit into the specified
precision (width of M)
• Possibly over/underflow if exponent outside of range

10

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351, Spring 2020L07: Floating Point II

Mathematical Properties of FP Operations

 Overflow yields ±∞ and underflow yields 0

 Floats with value ±∞ and NaN can be used in
operations

 Result usually still ±∞ or NaN, but not always intuitive

 Floating point operations do not work like real math,
due to rounding

 Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

 Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

 Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

11

CSE351, Spring 2020L07: Floating Point II

Aside: Limits of Interest

 The following thresholds will help give you a sense of
when certain outcomes come into play, but don’t
worry about the specifics:

 FOver = 2bias+1 = 28

• This is just larger than the largest representable normalized number

 FDenorm = 21−bias = 2−6

• This is the smallest representable normalized number

 FUnder = 21−bias−𝑚 = 2−9

• 𝑚 is the width of the mantissa field

• This is the smallest representable denormalized number

12

This is extra
(non-testable)

material

CSE351, Spring 2020L07: Floating Point II

Floating Point Encoding Flow Chart

13

= special case

Value 𝑣 to
encode

Is 𝑣 not a
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when
rounded,
≥ FOver?

Is 𝑣 , when
rounded,

< FDenorm?

Is 𝑣 , when
rounded,
< FUnder?

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

CSE351, Spring 2020L07: Floating Point II

Example Question [FP II - a]

 Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28 + 27?

 No voting

A. + 256

B. + 384

C. + ∞

D. NaN

E. We’re lost…
14

S E M

1 4 3

CSE351, Spring 2020L07: Floating Point II

Polling Question [FP II - b]

 Using our 8-bit representation, what value gets
stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

 Vote at http://pollev.com/rea

A. + 2.5

B. + 2.625

C. + 2.75

D. + 3.25

E. We’re lost…
15

S E M

1 4 3

http://pollev.com/rea

CSE351, Spring 2020L07: Floating Point II

Floating point topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
16

CSE351, Spring 2020L07: Floating Point II

Floating Point in C

 Two common levels of precision:
float 1.0f single precision (32-bit)

double 1.0 double precision (64-bit)

 #include <math.h> to get INFINITY and NAN
constants

 Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

17

!!!

CSE351, Spring 2020L07: Floating Point II

Floating Point Conversions in C

 Casting between int, float, and double changes
the bit representation
 int → float

• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

 int or float → double

• Exact conversion (all 32-bit ints representable)

 long → double

• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int

• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

18

!!!

CSE351, Spring 2020L07: Floating Point II

Polling Question [FP II - c]

 We execute the following code in C. How many bytes
are the same (value and position) between i and f?

 Vote at http://pollev.com/rea

A. 0 bytes

B. 1 byte

C. 2 bytes

D. 3 bytes

E. We’re lost…

19

int i = 384; // 2^8 + 2^7

float f = (float) i;

http://pollev.com/rea

CSE351, Spring 2020L07: Floating Point II

Floating Point and the Programmer

20

#include <stdio.h>

int main(int argc, char* argv[]) {

float f1 = 1.0;

float f2 = 0.0;

int i;

for (i = 0; i < 10; i++)

f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);

printf("f1 = %10.9f\n", f1);

printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;

f2 = 1E-30;

float f3 = f1 + f2;

printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;

}

$./a.out

0x3f800000 0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes

CSE351, Spring 2020L07: Floating Point II

Floating Point Summary

 Floats also suffer from the fixed number of bits
available to represent them
 Can get overflow/underflow

 “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or
distributive
 Mathematically equivalent ways of writing an expression

may compute different results

 Never test floating point values for equality!

 Careful when converting between ints and floats!
21

CSE351, Spring 2020L07: Floating Point II

Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970

 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years

 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

 1997: USS Yorktown “smart” warship stranded: divide by zero

 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
22

CSE351, Spring 2020L07: Floating Point II

Summary

 Floating point encoding has many limitations

 Overflow, underflow, rounding

 Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

 Floating point arithmetic is NOT associative or distributive

 Converting between integral and floating point data
types does change the bits

23

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

