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Administrivia

 Lab 1a due TONIGHT (4/13) at 11:59 pm
 Submit pointer.c and lab1Areflect.txt

 hw6 due Wednesday – 11am

 Lab 1b due Monday (4/20)
 Submit bits.c and lab1Breflect.txt

 You must log on with your @uw google account to access!!
 Google doc for 11:30 Lecture: https://tinyurl.com/351-04-13A

 Google doc for  2:30 Lecture: https://tinyurl.com/351-04-13B

 Week 2 Feedback Survey
 https://catalyst.uw.edu/webq/survey/rea2000/388285
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Other Special Cases

 E = 0xFF, M = 0:  ± ∞

 e.g. division by 0

 Still work in comparisons!

 E = 0xFF, M ≠ 0:  Not a Number (NaN)

 e.g. square root of negative number, 0/0, ∞–∞

 NaN propagates through computations

 Value of M can be useful in debugging

 New largest value (besides ∞)?

 E = 0xFF has now been taken!

 E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104
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Floating Point Encoding Summary

E M Meaning

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN
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Floating Point Interpretation Flow Chart
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FP Bits
What is the 
value of E?

What is the 
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything 
else

all 0’s

= special case
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Floating point topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
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Tiny Floating Point Representation

 We will use the following 8-bit floating point 
representation to illustrate some key points:

 Assume that it has the same properties as IEEE 
floating point:

 bias = 

 encoding of −0 = 

 encoding of +∞ =

 encoding of the largest (+) normalized # = 

 encoding of the smallest (+) normalized # = 
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Distribution of Values

 What ranges are NOT representable?

 Between largest norm and infinity

 Between zero and smallest denorm

 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next 
largest representable number?

 What is this “step” when Exp = 0?

 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero
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Overflow (Exp too large)

Underflow (Exp too small)

Rounding
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Floating Point Rounding

 The IEEE 754 standard actually specifies different 
rounding modes:

 Round to nearest, ties to nearest even digit

 Round toward +∞ (round up)

 Round toward −∞ (round down)

 Round toward 0 (truncation)

 In our tiny example:

 Man = 1.001 01 rounded to M = 0b001

 Man = 1.001 11 rounded to M = 0b010

 Man = 1.001 10 rounded to M = 0b010
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This is extra 
(non-testable) 

material

S E M

1 4 3



CSE351, Spring 2020L07:  Floating Point II

Floating Point Operations:  Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:

 First, compute the exact result

 Then round the result to make it fit into the specified 
precision (width of M)
• Possibly over/underflow if exponent outside of range
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S E M

Value = (-1)S×Mantissa×2Exponent
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Mathematical Properties of FP Operations

 Overflow yields ±∞ and underflow yields 0

 Floats with value ±∞ and NaN can be used in 
operations

 Result usually still ±∞ or NaN, but not always intuitive

 Floating point operations do not work like real math, 
due to rounding

 Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

 Not distributive: 100*(0.1+0.2) !=  100*0.1+100*0.2

30.000000000000003553 30

 Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

11



CSE351, Spring 2020L07:  Floating Point II

Aside: Limits of Interest

 The following thresholds will help give you a sense of 
when certain outcomes come into play, but don’t 
worry about the specifics:

 FOver = 2bias+1 = 28

• This is just larger than the largest representable normalized number

 FDenorm = 21−bias = 2−6

• This is the smallest representable normalized number

 FUnder = 21−bias−𝑚 = 2−9

• 𝑚 is the width of the mantissa field

• This is the smallest representable denormalized number
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Floating Point Encoding Flow Chart
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= special case

Value 𝑣 to 
encode

Is 𝑣 not a 
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when 
rounded, 
≥ FOver? 

Is 𝑣 , when 
rounded, 

< FDenorm? 

Is 𝑣 , when 
rounded, 
< FUnder? 

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No



CSE351, Spring 2020L07:  Floating Point II

Example Question [FP II - a]

 Using our 8-bit representation, what value gets 
stored when we try to encode 384 = 28 + 27?

 No voting

A. + 256

B. + 384

C. + ∞

D. NaN

E. We’re lost…
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Polling Question [FP II - b]

 Using our 8-bit representation, what value gets 
stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

 Vote at http://pollev.com/rea

A. + 2.5

B. + 2.625

C. + 2.75

D. + 3.25

E. We’re lost…
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Floating point topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
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Floating Point in C

 Two common levels of precision:
float 1.0f   single precision (32-bit)

double 1.0    double precision (64-bit)

 #include <math.h> to get INFINITY and NAN
constants

 Equality (==) comparisons between floating point 
numbers are tricky, and often return unexpected 
results, so just avoid them!
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Floating Point Conversions in C

 Casting between int, float, and double changes
the bit representation
 int → float

• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

 int or float → double

• Exact conversion (all 32-bit ints representable)

 long → double

• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int

• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN:  generally sets to Tmin
(even if the value is a very big positive)
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Polling Question [FP II - c]

 We execute the following code in C.  How many bytes 
are the same (value and position) between i and f?

 Vote at http://pollev.com/rea

A. 0 bytes

B. 1 byte

C. 2 bytes

D. 3 bytes

E. We’re lost…
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int i = 384;  // 2^8 + 2^7

float f = (float) i;

http://pollev.com/rea


CSE351, Spring 2020L07:  Floating Point II

Floating Point and the Programmer
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#include <stdio.h>

int main(int argc, char* argv[]) {

float f1 = 1.0;

float f2 = 0.0;

int i;

for (i = 0; i < 10; i++)

f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);

printf("f1 = %10.9f\n", f1);

printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;

f2 = 1E-30;

float f3 = f1 + f2;

printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

return 0;

}

$ ./a.out

0x3f800000  0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes
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Floating Point Summary

 Floats also suffer from the fixed number of bits 
available to represent them 
 Can get overflow/underflow

 “Gaps” produced in representable numbers means we can 
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or 
distributive
 Mathematically equivalent ways of writing an expression 

may compute different results

 Never test floating point values for equality!

 Careful when converting between ints and floats!
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Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded  ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970

 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years

 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

 1997: USS Yorktown “smart” warship stranded: divide by zero

 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
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Summary

 Floating point encoding has many limitations

 Overflow, underflow, rounding

 Rounding is a HUGE issue due to limited mantissa bits and 
gaps that are scaled by the value of the exponent

 Floating point arithmetic is NOT associative or distributive

 Converting between integral and floating point data 
types does change the bits 
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E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN


