
CSE351, Spring 2020L06: Floating Point I

Floating Point I
CSE 351 Spring 2020

Instructor: Teaching Assistants:

Ruth Anderson Alex Olshanskyy Callum Walker Chin Yeoh

Connie Wang Diya Joy Edan Sneh

Eddy (Tianyi) Zhou Eric Fan Jeffery Tian

Jonathan Chen Joseph Schafer Melissa Birchfield

Millicent Li Porter Jones Rehaan Bhimani

http://xkcd.com/571/

http://xkcd.com/257/

CSE351, Spring 2020L06: Floating Point I

Administrivia

 hw5 due Monday – 11am

 Lab 1a due Monday (4/13) at 11:59 pm
 Submit pointer.c and lab1Areflect.txt

 hw6 due Wednesday – 11am

 Lab 1b due Monday (4/20)
 Submit bits.c and lab1Breflect.txt

2

CSE351, Spring 2020L06: Floating Point I

Questions During Lecture – An Experiment
 Asking too many questions in chat window during lecture is

very distracting to some students

 While I am lecturing
 If you need to ask a question about content, please use the Google doc

 Staff will answer your questions in the Google doc during lecture

 We will reserve the chat window for short logistical questions (e.g.
“which slide deck?”, “We can’t see your screen”)

 When I explicitly pause to take questions - Use chat window to

type your question, or “raise hand” and I will call on you to speak

 We will not be saving the chat window. We WILL be saving,
and anonymizing the Google doc and sharing with the class.

 You must log on with your @uw google account to access!!
 Google doc for 11:30 Lecture: https://tinyurl.com/351-04-10A

 Google doc for 2:30 Lecture: https://tinyurl.com/351-04-10B

3

https://tinyurl.com/351-04-10A
https://tinyurl.com/351-04-10B

CSE351, Spring 2020L06: Floating Point I

Groups & Feedback

 Groups

 Some classes are allowing students to pick people they
would like to be in breakout groups with and stick with
those same breakout groups for the rest of the quarter.

 We are up for trying this.

 Tell us what you think on this survey!

 Week 2 Feedback Survey
 https://catalyst.uw.edu/webq/survey/rea2000/388285

4

https://catalyst.uw.edu/webq/survey/rea2000/388285

CSE351, Spring 2020L06: Floating Point I

Aside: Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order 𝑤 bits

 Implements Modular Arithmetic

 UMultw(u , v)= u · v mod 2w

5

• • •

• • •

u

v
*

• • •u · v

• • •

True Product:
𝟐𝒘 bits

Operands:
𝒘 bits

Discard 𝑤 bits:
𝒘 bits

UMultw(u , v)

• • •

CSE351, Spring 2020L06: Floating Point I

Aside: Multiplication with shift and add

 Operation u<<k gives u*2k

 Both signed and unsigned

 Examples:
 u<<3 == u * 8

 u<<5 - u<<3 == u * 24

 Most machines shift and add faster than multiply
• Compiler generates this code automatically

6

• • •u

2k
*

u · 2kTrue Product: 𝒘+ 𝒌 bits

Operands: 𝒘 bits

Discard 𝑘 bits: 𝒘 bits UMultw(u , 2k)

0 0 1 0 0 0••• •••
k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

CSE351, Spring 2020L06: Floating Point I

Number Representation Revisited

 What can we represent so far?

 Signed and Unsigned Integers

 Characters (ASCII)

 Addresses

 How do we encode the following:

 Real numbers (e.g. 3.14159)

 Very large numbers (e.g. 6.02×1023)

 Very small numbers (e.g. 6.626×10-34)

 Special numbers (e.g. ∞, NaN)

7

Floating
Point

CSE351, Spring 2020L06: Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
8

CSE351, Spring 2020L06: Floating Point I

Floating Point Summary

 Floats also suffer from the fixed number of bits
available to represent them
 Can get overflow/underflow, just like ints

 “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or
distributive
 Mathematically equivalent ways of writing an expression

may compute different results

 Never test floating point values for equality!

 Careful when converting between ints and floats!
9

CSE351, Spring 2020L06: Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

10

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Spring 2020L06: Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 In this 6-bit representation:
 What is the encoding and value of

the smallest (most negative) number?

 What is the encoding and value of
the largest (most positive) number?

 What is the smallest number greater
than 2 that we can represent?

11

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Spring 2020L06: Floating Point I

• • •

b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1

2i

• • •

1/2
1/4
1/8

2–j

bk 2
k

k j

i

12

CSE351, Spring 2020L06: Floating Point I

Fractional Binary Numbers

 Value Representation

 5 and 3/4

 2 and 7/8

 47/64

 Observations

 Shift left = multiply by power of 2

 Shift right = divide by power of 2

 Numbers of the form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

 Use notation 1.0 – ε

101.112

10.1112

0.1011112

13

CSE351, Spring 2020L06: Floating Point I

Limits of Representation

 Limitations:

 Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2y (y can be negative)

 Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3 = 0.333333…10 = 0.01010101[01]…2

• 1/5 = 0.001100110011[0011]…2

• 1/10 = 0.0001100110011[0011]…2

14

CSE351, Spring 2020L06: Floating Point I

Fixed Point Representation

 Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

 Wherever we put the binary point, with fixed point
representations there is a trade off between the
amount of range and precision we have

 Fixed point = fixed range and fixed precision
 range: difference between largest and smallest numbers possible

 precision: smallest possible difference between any two numbers

 Hard to pick how much you need of each!
15

CSE351, Spring 2020L06: Floating Point I

Floating Point Representation

 Analogous to scientific notation

 In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7

• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

 In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

 We have to divvy up the bits we have (e.g., 32) among:

 the sign (1 bit)

 the mantissa (significand)

 the exponent

16

CSE351, Spring 2020L06: Floating Point I

Scientific Notation (Decimal)

 Normalized form: exactly one digit (non-zero) to left
of decimal point

 Alternatives to representing 1/1,000,000,000
 Normalized: 1.0×10-9

 Not normalized: 0.1×10-8,10.0×10-10

17

6.0210 × 1023

radix (base)decimal point

exponentmantissa

CSE351, Spring 2020L06: Floating Point I

Scientific Notation (Binary)

 Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

 Declare such variable in C as float (or double)

18

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Spring 2020L06: Floating Point I

Scientific Notation Translation

 Convert from scientific notation to binary point
 Perform the multiplication by shifting the decimal until the exponent

disappears

• Example: 1.0112×24 = 101102 = 2210

• Example: 1.0112×2-2 = 0.010112 = 0.3437510

 Convert from binary point to normalized scientific notation
 Distribute out exponents until binary point is to the right of a single digit

• Example: 1101.0012 = 1.1010012×23

 Practice: Convert 11.37510 to normalized binary scientific
notation

19

CSE351, Spring 2020L06: Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
20

CSE351, Spring 2020L06: Floating Point I

IEEE Floating Point

 IEEE 754
 Established in 1985 as uniform standard for floating point arithmetic

 Main idea: make numerically sensitive programs portable

 Specifies two things: representation and result of floating operations

 Now supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible

 Engineers want them to be easy to implement and fast

 In the end:

• Scientists mostly won out

• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

21

CSE351, Spring 2020L06: Floating Point I

Floating Point Encoding

 Use normalized, base 2 scientific notation:

 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:

 Sign bit (0 is positive, 1 is negative)

 Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

 Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

22

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2020L06: Floating Point I

The Exponent Field

 Use biased notation

 Read exponent as unsigned, but with bias of 2w-1-1 = 127

 Representable exponents roughly ½ positive and ½ negative

 Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?

 Makes floating point arithmetic easier

 Makes somewhat compatible with two’s complement

 Practice: To encode in biased notation, add the bias then
encode in unsigned:
 Exp = 1 → → E = 0b

 Exp = 127 → → E = 0b

 Exp = -63 → → E = 0b
23

CSE351, Spring 2020L06: Floating Point I

The Mantissa (Fraction) Field

 Note the implicit 1 in front of the M bit vector

 Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as 1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”

 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1

24

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2020L06: Floating Point I

Polling Question [FP I – a]

 What is the correct value encoded by the following
floating point number?

 0b 0 10000000 11000000000000000000000

 Vote at http://pollev.com/rea

A. + 0.75

B. + 1.5

C. + 2.75

D. + 3.5

E. We’re lost…
25

http://pollev.com/rea

CSE351, Spring 2020L06: Floating Point I

Normalized Floating Point Conversions

 FP → Decimal
1. Append the bits of M to

implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the
exponent by shifting the
binary point.

5. Convert from binary to
decimal.

26

 Decimal → FP

1. Convert decimal to
binary.

2. Convert binary to
normalized scientific
notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent
and encode E as
unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

CSE351, Spring 2020L06: Floating Point I

Precision and Accuracy

 Precision is a count of the number of bits in a
computer word used to represent a value

 Capacity for accuracy

 Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

 High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

 Example: float pi = 3.14;
• pi will be represented using all 24 bits of the mantissa (highly

precise), but is only an approximation (not accurate)

27

CSE351, Spring 2020L06: Floating Point I

Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double

 Exponent bias is now 210–1 = 1023

 Advantages: greater precision (larger mantissa),
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate

28

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Spring 2020L06: Floating Point I

Representing Very Small Numbers

 But wait… what happened to zero?

 Using standard encoding 0x00000000 =

 Special case: E and M all zeros = 0
• Two zeros! But at least 0x00000000 = 0 like integers

 New numbers closest to 0:

 a = 1.0…02×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame

 Special case: E = 0, M ≠ 0 are denormalized numbers

29

0
+∞-∞

Gaps!

a

b

CSE351, Spring 2020L06: Floating Point I

Denorm Numbers

 Denormalized numbers

 No leading 1

 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero
and the smallest normalized number

 Smallest norm: ± 1.0…0two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

30

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Spring 2020L06: Floating Point I

Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers

 Exponent in biased notation (bias = 2w-1–1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision

• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

31

S E (8) M (23)
31 30 23 22 0

CSE351, Spring 2020L06: Floating Point I

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

32

CSE351, Spring 2020L06: Floating Point I

Tiny Floating Point Example

 8-bit Floating Point Representation

 The sign bit is in the most significant bit (MSB)

 The next four bits are the exponent, with a bias of 24-1–1 = 7

 The last three bits are the mantissa

 Same general form as IEEE Format

 Normalized binary scientific point notation

 Similar special cases for 0, denormalized numbers, NaN, ∞

33

S E M

1 4 3

CSE351, Spring 2020L06: Floating Point I

Dynamic Range (Positive Only)

34

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Spring 2020L06: Floating Point I

Special Properties of Encoding

 Floating point zero (0+) exactly the same bits as integer zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits

 Must consider 0- = 0+ = 0

 NaNs problematic

• Will be greater than any other values

• What should comparison yield?

 Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

35

