Floating Point I
CSE 351 Spring 2020

Instructor: Ruth Anderson

Teaching Assistants:
Alex Olshanskyy
Connie Wang
Eddy (Tianyi) Zhou
Jonathan Chen
Millicent Li
Callum Walker
Diya Joy
Eric Fan
Joseph Schafer
Porter Jones
Chin Yeoh
Edan Sneh
Jeffery Tian
Melissa Birchfield
Rehaan Bhimani

http://xkcd.com/571/
Administrivia

- hw5 due Monday – 11am

- Lab 1a due Monday (4/13) at 11:59 pm
 - Submit `pointer.c` and `lab1Areflect.txt`

- hw6 due Wednesday – 11am

- Lab 1b due Monday (4/20)
 - Submit `bits.c` and `lab1Breflect.txt`
Questions During Lecture – An Experiment

- Asking too many questions in **chat window** during lecture is very distracting to some students

- **While I am lecturing**
 - If you need to ask a question about content, please use the Google doc
 - Staff will answer your questions in the Google doc during lecture
 - We will reserve the **chat window** for short logistical questions (e.g. “which slide deck?”, “We can’t see your screen”)

- **When I explicitly pause to take questions** - Use **chat window** to type your question, or “**raise hand**” and I will call on you to speak

- We will not be saving the **chat window**. We WILL be saving, and anonymizing the Google doc and sharing with the class.

- **You must log on with your @uw google account to access!!**
 - Google doc for 11:30 Lecture: https://tinyurl.com/351-04-10A
 - Google doc for 2:30 Lecture: https://tinyurl.com/351-04-10B
Groups & Feedback

❖ Groups

 Some classes are allowing students to pick people they would like to be in breakout groups with and stick with those same breakout groups for the rest of the quarter.
 We are up for trying this.
 Tell us what you think on this survey!

❖ Week 2 Feedback Survey

 https://catalyst.uw.edu/webq/survey/rea2000/388285
Aside: Unsigned Multiplication in C

Operands:
- \(w \) bits

True Product:
- \(2w \) bits
 \[u \cdot v \]

Discard \(w \) bits:
- \(w \) bits

- Standard Multiplication Function
 - Ignores high order \(w \) bits
- Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Aside: Multiplication with shift and add

- **Operation** $u << k$ gives $u \times 2^k$
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u (\times 2^k)</th>
<th>True Product: $w + k$ bits</th>
<th>$u \times 2^k$</th>
<th>Discard k bits: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>(\underbrace{\cdots}_{k \text{ bits}}) (\underbrace{0 \cdots 0 1 0 \cdots 0 0}_w)</td>
<td>$u \times 2^k$ (\underbrace{0 \cdots 0 1 0 \cdots 0 0}_w)</td>
<td>$u \times 2^k$ (\underbrace{0 \cdots 0 1 0 \cdots 0 0}_w)</td>
<td></td>
</tr>
</tbody>
</table>

- **Examples:**
 - $u << 3$ \(== u \times 8\)
 - $u << 5 - u << 3$ \(== u \times 24\)

- Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

What can we represent so far?
- Signed and Unsigned Integers
- Characters (ASCII)
- Addresses

How do we encode the following:
- Real numbers (e.g. 3.14159)
- Very large numbers (e.g. 6.02×10^{23})
- Very small numbers (e.g. 6.626×10^{-34})
- Special numbers (e.g. ∞, NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

\[
\begin{array}{cccc}
 2^1 & 2^0 & 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} \\
 xx & . & yyyy & & & \\
\end{array}
\]

- **Example:** \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}\)
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

\[xx \cdot yyyyy \]

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?
Fractional Binary Numbers

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4: \(101.11_2\)
 - 2 and 7/8: \(10.111_2\)
 - 47/64: \(0.101111_2\)

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form \(0.111111\ldots_2\) are just below 1.0
 - \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^i} + \ldots \rightarrow 1.0\)
 - Use notation \(1.0 - \varepsilon\)
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form \(x \times 2^y \) (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/3) = 0.333333... ({10}) = 0.01010101[01]... ({2})</td>
<td></td>
</tr>
<tr>
<td>(1/5) = 0.001100110011[0011]... (_{2})</td>
<td></td>
</tr>
<tr>
<td>(1/10) = 0.0001100110011[0011]... (_{2})</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:

 #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0 \]

 #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ [.] \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - **In Decimal:**
 - Not 12000000, but 1.2×10^7 In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} In C: 1.2e-6
 - **In Binary:**
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing $1/1,000,000,000$
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the “floating” of the binary point
 - Declare such variable in C as float (or double)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: \(1.011_2 \times 2^4 = 10110_2 = 22_{10}\)
 - Example: \(1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}\)

- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: \(1101.001_2 = 1.101001_2 \times 2^3\)

- Practice: Convert \(11.375_{10}\) to normalized binary scientific notation
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- **IEEE 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - **Scientists**/numerical analysts want them to be as **real** as possible
 - **Engineers** want them to be **easy to implement** and **fast**
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - **Float operations can be an order of magnitude slower than integer ops**
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E
The Exponent Field

- **Use biased notation**
 - Read exponent as unsigned, but with *bias of* $2^{w-1}-1 = 127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as $E = 0b\ 0111\ 1111$

- **Why biased?**
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- **Practice:** To encode in biased notation, add the bias then encode in unsigned:
 - $\text{Exp} = 1 \rightarrow \ E = 0b$
 - $\text{Exp} = 127 \rightarrow \ E = 0b$
 - $\text{Exp} = -63 \rightarrow \ E = 0b$
The Mantissa (Fraction) Field

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000 is read as 1.1₂ = 1.5₁₀, not 0.1₂ = 0.5₁₀
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}
Polling Question [FP I – a]

What is the correct value encoded by the following floating point number?

- 0b 0 10000000 110000000000000000000000

Vote at http://pollev.com/rea

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost...
Normalized Floating Point Conversions

- FP → Decimal
 1. Append the bits of M to implicit leading 1 to form the mantissa.
 2. Multiply the mantissa by $2^{E - \text{bias}}$.
 3. Multiply the sign $(-1)^S$.
 4. Multiply out the exponent by shifting the binary point.
 5. Convert from binary to decimal.

- Decimal → FP
 1. Convert decimal to binary.
 2. Convert binary to normalized scientific notation.
 3. Encode sign as S (0/1).
 4. Add the bias to exponent and encode E as unsigned.
 5. The first bits after the leading 1 that fit are encoded into M.
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- **Accuracy** is a measure of the difference between the actual value of a number and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
 - **Example:** `float pi = 3.14;`
 - `pi` will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

 - C variable declared as `double`
 - Exponent bias is now $2^{10} - 1 = 1023$

 - **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
 - **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - **Special case**: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers

- New numbers closest to 0:
 - \(a = 1.0...0 \times 2^{-126} = 2^{-126} \)
 - \(b = 1.0...01 \times 2^{-126} = 2^{-126} + 2^{-149} \)
 - Normalization and implicit 1 are to blame
 - **Special case**: E = 0, M ≠ 0 are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0...01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

This is extra (non-testable) material

So much closer to 0
Summary

- Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers

- Exponent in biased notation (bias = $2^{w-1} - 1$)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is overflow and underflow

- Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable precision
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding
An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
 - The last three bits are the mantissa

- **Same general form as IEEE Format**
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td></td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td></td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td></td>
</tr>
<tr>
<td>0 0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td></td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

- **Denormalized numbers**
 - Closest to zero: 0 0000 000
 - Largest denorm: 0 0000 111
 - Smallest norm: 0 0001 000

- **Normalized numbers**
 - Closest to 1 below: 0 0110 110
 - Closest to 1 above: 0 1110 110
 - Largest norm: 0 1111 000
Special Properties of Encoding

- Floating point zero (0\^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0^- = 0^+ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity