
CSE351, Spring 2020L06: Floating Point I

Floating Point I
CSE 351 Spring 2020

Instructor: Teaching Assistants:

Ruth Anderson Alex Olshanskyy Callum Walker Chin Yeoh

Connie Wang Diya Joy Edan Sneh

Eddy (Tianyi) Zhou Eric Fan Jeffery Tian

Jonathan Chen Joseph Schafer Melissa Birchfield

Millicent Li Porter Jones Rehaan Bhimani

http://xkcd.com/571/

http://xkcd.com/257/

CSE351, Spring 2020L06: Floating Point I

Administrivia

 hw5 due Monday – 11am

 Lab 1a due Monday (4/13) at 11:59 pm
 Submit pointer.c and lab1Areflect.txt

 hw6 due Wednesday – 11am

 Lab 1b due Monday (4/20)
 Submit bits.c and lab1Breflect.txt

2

CSE351, Spring 2020L06: Floating Point I

Questions During Lecture – An Experiment
 Asking too many questions in chat window during lecture is

very distracting to some students

 While I am lecturing
 If you need to ask a question about content, please use the Google doc

 Staff will answer your questions in the Google doc during lecture

 We will reserve the chat window for short logistical questions (e.g.
“which slide deck?”, “We can’t see your screen”)

 When I explicitly pause to take questions - Use chat window to

type your question, or “raise hand” and I will call on you to speak

 We will not be saving the chat window. We WILL be saving,
and anonymizing the Google doc and sharing with the class.

 You must log on with your @uw google account to access!!
 Google doc for 11:30 Lecture: https://tinyurl.com/351-04-10A

 Google doc for 2:30 Lecture: https://tinyurl.com/351-04-10B

3

https://tinyurl.com/351-04-10A
https://tinyurl.com/351-04-10B

CSE351, Spring 2020L06: Floating Point I

Groups & Feedback

 Groups

 Some classes are allowing students to pick people they
would like to be in breakout groups with and stick with
those same breakout groups for the rest of the quarter.

 We are up for trying this.

 Tell us what you think on this survey!

 Week 2 Feedback Survey
 https://catalyst.uw.edu/webq/survey/rea2000/388285

4

https://catalyst.uw.edu/webq/survey/rea2000/388285

CSE351, Spring 2020L06: Floating Point I

Aside: Unsigned Multiplication in C

 Standard Multiplication Function

 Ignores high order 𝑤 bits

 Implements Modular Arithmetic

 UMultw(u , v)= u · v mod 2w

5

• • •

• • •

u

v
*

• • •u · v

• • •

True Product:
𝟐𝒘 bits

Operands:
𝒘 bits

Discard 𝑤 bits:
𝒘 bits

UMultw(u , v)

• • •

CSE351, Spring 2020L06: Floating Point I

Aside: Multiplication with shift and add

 Operation u<<k gives u*2k

 Both signed and unsigned

 Examples:
 u<<3 == u * 8

 u<<5 - u<<3 == u * 24

 Most machines shift and add faster than multiply
• Compiler generates this code automatically

6

• • •u

2k
*

u · 2kTrue Product: 𝒘+ 𝒌 bits

Operands: 𝒘 bits

Discard 𝑘 bits: 𝒘 bits UMultw(u , 2k)

0 0 1 0 0 0••• •••
k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

CSE351, Spring 2020L06: Floating Point I

Number Representation Revisited

 What can we represent so far?

 Signed and Unsigned Integers

 Characters (ASCII)

 Addresses

 How do we encode the following:

 Real numbers (e.g. 3.14159)

 Very large numbers (e.g. 6.02×1023)

 Very small numbers (e.g. 6.626×10-34)

 Special numbers (e.g. ∞, NaN)

7

Floating
Point

CSE351, Spring 2020L06: Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
8

CSE351, Spring 2020L06: Floating Point I

Floating Point Summary

 Floats also suffer from the fixed number of bits
available to represent them
 Can get overflow/underflow, just like ints

 “Gaps” produced in representable numbers means we can
lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)

• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or
distributive
 Mathematically equivalent ways of writing an expression

may compute different results

 Never test floating point values for equality!

 Careful when converting between ints and floats!
9

CSE351, Spring 2020L06: Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

10

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Spring 2020L06: Floating Point I

Representation of Fractions

 “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 In this 6-bit representation:
 What is the encoding and value of

the smallest (most negative) number?

 What is the encoding and value of
the largest (most positive) number?

 What is the smallest number greater
than 2 that we can represent?

11

xx.yyyy

21
20 2-1

2-2 2-3 2-4

CSE351, Spring 2020L06: Floating Point I

• • •

b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1

2i

• • •

1/2
1/4
1/8

2–j

bk 2
k

k j

i



12

CSE351, Spring 2020L06: Floating Point I

Fractional Binary Numbers

 Value Representation

 5 and 3/4

 2 and 7/8

 47/64

 Observations

 Shift left = multiply by power of 2

 Shift right = divide by power of 2

 Numbers of the form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

 Use notation 1.0 – ε

101.112

10.1112

0.1011112

13

CSE351, Spring 2020L06: Floating Point I

Limits of Representation

 Limitations:

 Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2y (y can be negative)

 Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3 = 0.333333…10 = 0.01010101[01]…2

• 1/5 = 0.001100110011[0011]…2

• 1/10 = 0.0001100110011[0011]…2

14

CSE351, Spring 2020L06: Floating Point I

Fixed Point Representation

 Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

 Wherever we put the binary point, with fixed point
representations there is a trade off between the
amount of range and precision we have

 Fixed point = fixed range and fixed precision
 range: difference between largest and smallest numbers possible

 precision: smallest possible difference between any two numbers

 Hard to pick how much you need of each!
15

CSE351, Spring 2020L06: Floating Point I

Floating Point Representation

 Analogous to scientific notation

 In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7

• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

 In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

 We have to divvy up the bits we have (e.g., 32) among:

 the sign (1 bit)

 the mantissa (significand)

 the exponent

16

CSE351, Spring 2020L06: Floating Point I

Scientific Notation (Decimal)

 Normalized form: exactly one digit (non-zero) to left
of decimal point

 Alternatives to representing 1/1,000,000,000
 Normalized: 1.0×10-9

 Not normalized: 0.1×10-8,10.0×10-10

17

6.0210 × 1023

radix (base)decimal point

exponentmantissa

CSE351, Spring 2020L06: Floating Point I

Scientific Notation (Binary)

 Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

 Declare such variable in C as float (or double)

18

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Spring 2020L06: Floating Point I

Scientific Notation Translation

 Convert from scientific notation to binary point
 Perform the multiplication by shifting the decimal until the exponent

disappears

• Example: 1.0112×24 = 101102 = 2210

• Example: 1.0112×2-2 = 0.010112 = 0.3437510

 Convert from binary point to normalized scientific notation
 Distribute out exponents until binary point is to the right of a single digit

• Example: 1101.0012 = 1.1010012×23

 Practice: Convert 11.37510 to normalized binary scientific
notation

19

CSE351, Spring 2020L06: Floating Point I

Floating Point Topics

 Fractional binary numbers

 IEEE floating-point standard

 Floating-point operations and rounding

 Floating-point in C

 There are many more details that we won’t cover

 It’s a 58-page standard…
20

CSE351, Spring 2020L06: Floating Point I

IEEE Floating Point

 IEEE 754
 Established in 1985 as uniform standard for floating point arithmetic

 Main idea: make numerically sensitive programs portable

 Specifies two things: representation and result of floating operations

 Now supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible

 Engineers want them to be easy to implement and fast

 In the end:

• Scientists mostly won out

• Nice standards for rounding, overflow, underflow, but...

• Hard to make fast in hardware

• Float operations can be an order of magnitude slower than integer ops

21

CSE351, Spring 2020L06: Floating Point I

Floating Point Encoding

 Use normalized, base 2 scientific notation:

 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:

 Sign bit (0 is positive, 1 is negative)

 Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

 Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

22

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2020L06: Floating Point I

The Exponent Field

 Use biased notation

 Read exponent as unsigned, but with bias of 2w-1-1 = 127

 Representable exponents roughly ½ positive and ½ negative

 Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?

 Makes floating point arithmetic easier

 Makes somewhat compatible with two’s complement

 Practice: To encode in biased notation, add the bias then
encode in unsigned:
 Exp = 1 → → E = 0b

 Exp = 127 → → E = 0b

 Exp = -63 → → E = 0b
23

CSE351, Spring 2020L06: Floating Point I

The Mantissa (Fraction) Field

 Note the implicit 1 in front of the M bit vector

 Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000
is read as 1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”

 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1

24

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Spring 2020L06: Floating Point I

Polling Question [FP I – a]

 What is the correct value encoded by the following
floating point number?

 0b 0 10000000 11000000000000000000000

 Vote at http://pollev.com/rea

A. + 0.75

B. + 1.5

C. + 2.75

D. + 3.5

E. We’re lost…
25

http://pollev.com/rea

CSE351, Spring 2020L06: Floating Point I

Normalized Floating Point Conversions

 FP → Decimal
1. Append the bits of M to

implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.

4. Multiply out the
exponent by shifting the
binary point.

5. Convert from binary to
decimal.

26

 Decimal → FP

1. Convert decimal to
binary.

2. Convert binary to
normalized scientific
notation.

3. Encode sign as S (0/1).

4. Add the bias to exponent
and encode E as
unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

CSE351, Spring 2020L06: Floating Point I

Precision and Accuracy

 Precision is a count of the number of bits in a
computer word used to represent a value

 Capacity for accuracy

 Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

 High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

 Example: float pi = 3.14;
• pi will be represented using all 24 bits of the mantissa (highly

precise), but is only an approximation (not accurate)

27

CSE351, Spring 2020L06: Floating Point I

Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double

 Exponent bias is now 210–1 = 1023

 Advantages: greater precision (larger mantissa),
greater range (larger exponent)

 Disadvantages: more bits used,
slower to manipulate

28

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Spring 2020L06: Floating Point I

Representing Very Small Numbers

 But wait… what happened to zero?

 Using standard encoding 0x00000000 =

 Special case: E and M all zeros = 0
• Two zeros! But at least 0x00000000 = 0 like integers

 New numbers closest to 0:

 a = 1.0…02×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame

 Special case: E = 0, M ≠ 0 are denormalized numbers

29

0
+∞-∞

Gaps!

a

b

CSE351, Spring 2020L06: Floating Point I

Denorm Numbers

 Denormalized numbers

 No leading 1

 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero
and the smallest normalized number

 Smallest norm: ± 1.0…0two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

30

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Spring 2020L06: Floating Point I

Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers

 Exponent in biased notation (bias = 2w-1–1)
• Size of exponent field determines our representable range

• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision

• Implicit leading 1 (normalized) except in special cases

• Exceeding length causes rounding

31

S E (8) M (23)
31 30 23 22 0

CSE351, Spring 2020L06: Floating Point I

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

32

CSE351, Spring 2020L06: Floating Point I

Tiny Floating Point Example

 8-bit Floating Point Representation

 The sign bit is in the most significant bit (MSB)

 The next four bits are the exponent, with a bias of 24-1–1 = 7

 The last three bits are the mantissa

 Same general form as IEEE Format

 Normalized binary scientific point notation

 Similar special cases for 0, denormalized numbers, NaN, ∞

33

S E M

1 4 3

CSE351, Spring 2020L06: Floating Point I

Dynamic Range (Positive Only)

34

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Spring 2020L06: Floating Point I

Special Properties of Encoding

 Floating point zero (0+) exactly the same bits as integer zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits

 Must consider 0- = 0+ = 0

 NaNs problematic

• Will be greater than any other values

• What should comparison yield?

 Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

35

