Data III & Integers I
CSE 351 Spring 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Alex Olshanskyy
Rehaan Bhimani
Callum Walker
Chin Yeoh
Diya Joy
Eric Fan
Edan Sneh
Jonathan Chen
Jeffery Tian
Millicent Li
Melissa Birchfield
Porter Jones
Joseph Schafer
Connie Wang
Eddy (Tianyi) Zhou

http://xkcd.com/257/
Administrivia

- hw3 due Wednesday – 11am
- hw4 due Friday – 11am

- Lab 1a released
 - Workflow:
 1) Edit `pointer.c`
 2) Run the Makefile (`make`) and check for compiler errors & warnings
 3) Run `ptest (. / ptest)` and check for correct behavior
 4) Run rule/syntax checker (`python dlc.py`) and check output
 - Due Monday 4/13, will overlap a bit with Lab 1b
 - We grade just your last submission
Lab Reflections

- All subsequent labs (after Lab 0) have a “reflection” portion
 - The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Gradescope
 - These will be graded “by hand” (read by TAs)

- Intended to check your understand of what you should have learned from the lab
Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths
- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine “word” size = address size = register size
 - Endianness – ordering bytes in memory
- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays

- Boolean algebra and bit-level manipulations
Boolean Algebra

- **Developed by George Boole in 19th Century**
 - Algebraic representation of logic (True \rightarrow 1, False \rightarrow 0)
 - **AND:** $A \& B = 1$ when both A is 1 and B is 1
 - **OR:** $A \mid B = 1$ when either A is 1 or B is 1
 - **XOR:** $A \oplus B = 1$ when either A is 1 or B is 1, but not both
 - **NOT:** $\sim A = 1$ when A is 0 and vice-versa

- **DeMorgan’s Law:**
 - $\sim (A \mid B) = \sim A \& \sim B$
 - $\sim (A \& B) = \sim A \mid \sim B$

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$&$</td>
<td>0 1</td>
<td>\mid</td>
<td>0 1</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
<td>0 0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 1 1</td>
<td>1 1 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on bit vectors
 - Operations applied bitwise
 - All of the properties of Boolean algebra apply

\[
\begin{align*}
01101001 & \quad 01101001 & \quad 01101001 \\
\& 01010101 & \mid 01010101 & \^ 01010101 & \sim 01010101
\end{align*}
\]

- Examples of useful operations:

\[
x \^ x = 0
\]

\[
x \mid 1 = 1, \quad x \mid 0 = x
\]
Bit-Level Operations in C

- & (AND), | (OR), ^ (XOR), ~ (NOT)
 - View arguments as bit vectors, apply operations bitwise
 - Apply to any “integral” data type
 - long, int, short, char, unsigned

Examples with char a, b, c;

- a = (char) 0x41; // 0x41 -> 0b 0100 0001
 b = ~a; // 0b 1111 1110

- a = (char) 0x69; // 0x69 -> 0b 0110 1001
 b = (char) 0x55; // 0x55 -> 0b 0101 0101
 c = a & b; // 0b 0100 0000

- a = (char) 0x41; // 0x41 -> 0b 0100 0001
 b = a; // 0b 0100 0001
 c = a ^ b; // 0b 0100 0000

- b = (char) 0x55; // 0x55 -> 0b 0101 0101
 c = a & b; // 0b 0100 0000
 d = a ^ b; // 0b 0100 0000

- a = (char) 0x41; // 0x41 -> 0b 0100 0001
 b = ~a; // 0b 1111 1110
 c = a & b; // 0b 0100 0000
 d = a ^ b; // 0b 0100 0000

- a = (char) 0x69; // 0x69 -> 0b 0110 1001
 b = (char) 0x55; // 0x55 -> 0b 0101 0101
 c = a & b; // 0b 0100 0000
 d = a ^ b; // 0b 0100 0000
Contrast: Logic Operations

- Logical operators in C: `&&` (AND), `||` (OR), `!` (NOT)
 - 0 is False, anything nonzero is True
 - Always return 0 or 1
 - Early termination (a.k.a. short-circuit evaluation) of `&&`, `||`

- Examples (char data type)
 - `!0x41` -> `0x00`
 - `!0x00` -> `0x01`
 - `!!0x41` -> `0x01`
 - `p && *p`
 - If `p` is the null pointer (0x0), then `p` is never dereferenced!
Polling Question

- Given the bitwise vectors \(x = 0xBA; \ y = 0xE3; \)
- Compute the result of \((x \mid \mid y) ^ \sim (x \& y)\)
 - Vote at http://pollev.com/pbjones
 - A. 0xA6
 - B. 0xA3
 - C. 0x5C
 - D. 0xFF
 - E. We’re lost...
Puppy break
Roadmap

C:

```c
#include "car.h"

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
c.getMPG();
```

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
1100000111110100011111
```

Computer system:

OS:

Windows 10
OS X Yosemite

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Processes
Virtual memory
Memory & caches
Memory allocation
Java vs. C
But before we get to integers....

- Encode a standard deck of playing cards
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

- “One-hot” encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

![low-order 52 bits of 64-bit word](image)

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values
- Easier to compare suits and values, but still lots of bits used
Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed
 - $2^6 = 64 \geq 52$
 - Fits in one byte (smaller than one-hot encodings)
 - How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

<table>
<thead>
<tr>
<th></th>
<th>♠</th>
<th>♦</th>
<th>♥</th>
<th></th>
<th></th>
<th>♣</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>.</td>
<td>.</td>
<td>00</td>
<td>.</td>
</tr>
<tr>
<td>Q</td>
<td>00</td>
<td>01</td>
<td>01</td>
<td>.</td>
<td>.</td>
<td>01</td>
<td>.</td>
</tr>
<tr>
<td>J</td>
<td>01</td>
<td>10</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>10</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

low-order 6 bits of a byte

suit value
Compare Card Suits

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare

_card1 = hand[0];
_card2 = hand[1];
...

if (sameSuitP(card1, card2)) { ... }

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
}

returns int
SUIT_MASK = 0x30 = 0011100000
mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v. Here we turn all but the bits of interest in v to 0.
Compare Card **Suits**

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v \).

Here we turn all *but* the bits of interest in \(v \) to 0.

\[
\begin{align*}
00010010 & \land
00110000 =
00010000
\land
00110000 =
00010000
\land
00110000
\end{align*}
\]

\[! (x \land y) \text{ equivalent to } x == y \]

\[SUIT_MASK \]
Compare Card Values

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

```
VALUE_MASK = 0x0F = \text{0000011111}
```

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v\).
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
Integers

- **Binary representation of integers**
 - Unsigned and signed
 - Casting in C

- **Consequences of finite width representation**
 - Overflow, sign extension

- **Shifting and arithmetic operations**
Encoding Integers

- The hardware (and C) supports two flavors of integers
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- Cannot represent all integers with \(w \) bits
 - Only \(2^w \) distinct bit patterns
 - Unsigned values: \(0 \ldots 2^w - 1 \)
 - Signed values: \(-2^{w-1} \ldots 2^{w-1} - 1 \)

- **Example:** 8-bit integers (*e.g.* `char`)
Unsigned Integers

- Unsigned values follow the standard base 2 system
 - $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 = b_7 2^7 + b_6 2^6 + \cdots + b_1 2^1 + b_0 2^0$

- Add and subtract using the normal “carry” and “borrow” rules, just in binary

 \[
 \begin{array}{c}
 63 \\
 + 8 \\
 \hline
 71
 \end{array}
 \begin{array}{c}
 00111111 \\
 +00001000 \\
 \hline
 01000111
 \end{array}
 \]

- Useful formula: $2^{N-1} + 2^{N-2} + \cdots + 2 + 1 = 2^N - 1$
 - i.e. N ones in a row = $2^N - 1$

- How would you make *signed* integers?
Sign and Magnitude

- Designate the high-order bit (MSB) as the “sign bit”
 - \(\text{sign}=0 \): positive numbers; \(\text{sign}=1 \): negative numbers

- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned
 - All zeros encoding is still = 0

- Examples (8 bits):
 - \(\text{0x00} = 00000000_2 \) is non-negative, because the sign bit is 0
 - \(\text{0x7F} = 01111111_2 \) is non-negative \((+127_{10})\)
 - \(\text{0x85} = 10000101_2 \) is negative \((-5_{10})\)
 - \(\text{0x80} = 10000000_2 \) is negative... zero???
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

Unsigned

Sign and Magnitude
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: $4 - 3 \neq 4 + (-3)$
 - Negatives “increment” in wrong direction!
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
 2) “Shift” negative numbers to eliminate −0

- MSB *still* indicates sign!
 - This is why we represent one more negative than positive number (−2^{N−1} to 2^{N−1} − 1)
Two’s Complement Negatives

Accomplished with one neat mathematical trick!

- b_{w-1} has weight -2^{w-1}, other bits have usual weights $+2^i$

4-bit Examples:
- 1010_2 unsigned:
 \[1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 10\]
- 1010_2 two’s complement:
 \[-1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = -6\]

-1 represented as:
- $1111_2 = -2^3 + (2^3 - 1)$
 - MSB makes it super negative, add up all the other bits to get back up to -1
Why Two’s Complement is So Great

- Roughly same number of (+) and (−) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0

Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!
 \[\sim x + 1 = -x \]
Polling Question [Int I - b]

- Take the 4-bit number encoding \(x = 0b1011 \)
- Which of the following numbers is NOT a valid interpretation of \(x \) using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two’s Complement
 - Vote at http://pollev.com/rea

A. -4
B. -5
C. 11
D. -3
E. We’re lost...
Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) different than logical AND (&&), OR (||), and NOT (!)
 - Especially useful with bit masks

- Choice of *encoding scheme* is important
 - Tradeoffs based on size requirements and desired operations

- Integers represented using unsigned and two’s complement representations
 - Limited by fixed bit width
 - We’ll examine arithmetic operations next lecture