WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Memory, Data, & Addressing |

CSE 351 Spring 2020

Instructor:
Ruth Anderson

ON A SCALE OF 1 To 10,

Teaching Assistants: HOW LIKELY IS IT THAT
Alex Olshanskyy THIS QUESTION 1S
Rehaan Bhimani USING RINARY?
Callum Walker

Chin Yeoh { .47
Diya Joy WHATS A Y 7)

Eric Fan \

Edan Sneh

Jonathan Chen
Jeffery Tian
Millicent Li
Melissa Birchfield
Porter Jones
Joseph Schafer
Connie Wang http://xkcd.com/953/
Eddy (Tianyi) Zhou

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Administrivia

+» Assignments — Nothing Due this week!

- Pre-Course Survey, hwO, hwl, hw2 due Mon (4/06) — 11:59pm
- Lab O due Tuesday (4/07) — 11:59pm

" This lab is exploratory and looks like a hw; the other labs will
look a lot different (involve writing code etc.)

= Don’t worry if everything in Lab 0 doesn’t make perfect

sense right now! We will cover all of these topics in more
detail later in the course.

= Lab 0 is about getting you used to modifying C code and
running it to see what the outcome is — a powerful tool for
understanding the concepts in this course!

+» hw3 due Wednesday (4/08) — 11am

+ Feedback for tOday: https://catalyst.uw.edu/webg/survey/rea2000/387679

CSE351, Spring 2020

2

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Q & A Since Monday (1 of 2)

% CSE391 — Unix Tools
" Anyone taking this course, including non-CSE majors

« Tuesday 1:30-2:20pm
« https://courses.cs.washington.edu/courses/cse391/20sp/

® 391 Instructors trying to increase enrollment cap, if not | can
post some old 391 videos

« Textbook

= Normally | have a copy of our text on reserve at the
Engineering library, this quarter | have requested that an
electronic version be on reserve but have not heard back
about that.

= Thereis a 180 day digital rental available for $34.99 from the

UW Bookstore. 3

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Q & A Since Monday (2 of 2)

+ PollEverywhere participation

" You may attend either lecture section — your pollEverywhere
responses will be counted for credit in either lecture.

® This week PollEverywhere use is just to get folks used to the
technology, not for Participation credit

= Starting next week we will have a mechanism in place for
students who cannot attend lecture synchronously to be
able to answer pollEverywhere questions. This will likely be
outside of pollEverywhere (maybe canvas), and will likely be

due before the next lecture meeting. (We cannot simply leave
pollEverywhere open between classes in the case that we have multiple
qguestions per class (likely) — I can only have one question open at a time.
| am trying to leave a question open after lecture this week just to let
folks try out the technology.)

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Roadmap
C: Java: Memory & data
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
~S &~
Assembly get_mpg:
language: pushg %rbp

movq %rsp, %rbp

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE351, Spring 2020

Memory, Data, and Addressing

+» Hardware - High Level Overview
+» Representing information as bits and bytes
" Memory is a byte-addressable array
" Machine “word” size = address size = register size
% Organizing and addressing data in memory
" Endianness — ordering bytes in memory
+» Manipulating data in memory using C

+» Boolean algebra and bit-level manipulations

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Hardware: Physical View

(2
& USB...
o PCI-Express Shts
2 1 PCI-E X186, 2 PCI-E X1 Back Panel Connectors
<& |
O PCI Slots
o |
% = . . i
® CPU
mpty slot)
Sockaet 775
Cored Quad/
Cored Extreme
Ready
Intel P45
Chipset
| / O Intel ICH10
3 ' DhRz2
Sl 1066+MHz
controller
Seral ATA
Headars

Storage connections

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Hardware: Logical View

lc: (aJ
) or\:kode dota
'ms‘irv\.C\ N S+°ra3e
exewtdon

CPU P

Thter connection Bus

. (Net() (UsB)| | Etc

W UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: 351 View (version 0)

4 O

P Y

«+ The CPU executes instructions

+» Memory stores data How are data

and instructions
+» Binary encoding! represented?

~

/

= |nstructions are just data (e stored in "\em'\/)

CSES351, Spring 2020

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Aside: Why Base 2?

+ Electronic implementation
= Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 > < 1 > — 0 —
3.3V —
2.8V — N
0.5V — / \\’\f
/'—\/—/\-J
0.0V —

+» Other bases possible, but not yet viable:
= DNA data storage (base 4: A, C, G, T) is a hot topic
" Quantum computing

10

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Binary Encoding Additional Details

+» Because storage is finite in reality, everything is

stored as “fixed” length
" Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

" | eading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the

numbe@is 0b00000100 O\, 100
Least Significant Bit (LSB)

& 57500 oF >
(\g«%uﬁﬂ U @“’)z

Most Significant Bit (MSB)

]
11

W UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: 351 View (version 0)

a instructions

data

&P Y,
+» To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation

4) (if applicable) Write the result back to memory

CSES351, Spring 2020

12

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Hardware: 351 View (version 1)

/ i-cache

take 469

instructions

\C P U registers/

«» More CPU details:

" |nstructions are held temporarily in the instruction cache

" Other data are held temporarily in registers
+ Instruction fetching is hardware-controlled
» Data movement is programmer-controlled (assembly)

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Hardware: 351 View (version 1)

/ i-cache

take 469

+» We will start by learning about Memory

instructions

/
How does a

program find its

' ?
\data in memory? |

14

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

An Address Refers to a Byte of Memory

oL 1.
/EQ 0'» ‘(KZ\‘\ = 2 hex d.‘j'qs <(<</ <<<(
O O 1 byle L&
Y ¥ N\
/ o~
|owed aMr: / A’% \ oo o0 ;5"\6.51' 6\&&(

I\
oL 1010 I

« Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

= Each address is just a number represented in fixed-len ﬂth binary
eq & b-bit addres prust be gpeches o8 b — - — - - sevea it vilue i, say, OLO

« Programs refer to bytes in memory by their addresses

= Domain of possible addresses = address space

®" We can store addresses as data to ”remembzar” where other data is in
memory (pom‘%ers)
51 vk = 8 bits <> 202756 Ahogs = O 2555)

+ But not all values fit in a single byte... (e.g. 351) > 255

= Many operations actually use multi-byte values
15

CSE351, Spring 2020

W UNIVERSITY of WASHINGTON L02: Memory & Data |

Polling Question

+ If we choose to use 4-bit addresses, how big is our

address space?
= j.,e. How much space can we “refer to” using our addresses?

= \/ote at http://PollEv.com/rea

A. an addeess: Ob _ _ _ _
]owes‘f‘, O O O O
\B. 16 bytes highest: L L 11
C. 4 bits
D. 4 bytes L-l \:>‘-+$ <:> (‘e(:vesen‘l' Z-q '”\'M\QS
E. We’re IOSt.u Heve, oach wddress vefes + A fkl+_€ (y(dcj‘&/

S0 owv 6ddv Sfc\(e s l |Q bﬁes \
16

CSE351, Spring 2020

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Machine “Words”

% Instructions encoded into machine code (0’s and 1’s)

= Historically (still true in some assembly languages), all
instructions were exactly the size of a word

+~ We have chosen to tie word size to address size/width

= word size = address size =@‘ CU Lits .4

= word size = w bits = 2% addresses = 2 -bfte aMres space

% Current x86 systems use 64-bit (8-byte) words

" Potential address space: 294 addresses
254 bytes ~ 1.8 x 10?° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

17

WA UNIVERSITY of WASHINGTON

Word-Oriented View of Memory

- Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of word-
sized chunks of data instead

= Addresses of successive word
differ by word size

= Which byte’s address should we

use for each word?

LO2: Memory & Data |

(View)
64-bit

Words

~

32-bit
Words

Addr

??

—_— -

Addr

??

Addr

??

Addr

??

(Actua)
Bytes

CSE351, Spring 2020

Addr.
(hex)

0x00
0Ox01
0x02
Ox03
0Ox04
0Ox05
0Ox06
0x07
0Ox08
0Ox09
Ox0A
Ox0B
Ox0C
Ox0D
OxOE
OxOF

18

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Address of a Word = Address of First Byte in the Word

. _ 64-bit 32-bit Bytes ddr.

. Addresses still specify Words Words y (hex)
locations of bytes in memory, 0x00
but we can choose to view Adr 0x01
memory as a series of word- | ... 0000 0x02
sized chunks of data instead = [OX(B j

0000 0x04

= Addresses of successive words Addr i 0x05

differ by word size 0004 0x06

= Which byte’s address should we 0x07/
use for each word? @

Addr

» The address of any chunk of - 0x03

. 0008 Ox0A

memory is given by the address| Addr OxOB

of the first byte 0008 0x0C

= To specify a chunk of memory, Addr Ox0D

need both its address and its size 0012 OxOE

— OxOF

19

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

- - ;
Alighment NN
64-bit 32-bit Addr.
. The address of a chunk of Words Words Y (hex)
memory is considered aligned 0x00
if its address is a multiple of its Addr 0x01
o 0000 0x02
= View memory as a series of 0000 7% \,m\"f)"eb'l_ 8§82
consecutive chunks of this / Addr 0x05
particular size and see if your y
, 0004 0x06
chunk doesn’t cross a boundary y 0x07
| Ox08
Adzdo[\:flf\e& ‘ 0x09
Addr 0008 Ox0A
= J Ox0B
0008, Ox0C
Addr 0x0D
0012 OxOE
~ OXOF .

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes

" Eachcellisabyte o7 ﬁ: one word

. . d\C l
" An aligned, 64-bit l \
chunk of data will Addressy, 00 0x07 092 0403 0x0% 0x05 0% 007

0x00 T2 7 JNENEN “%

0x08G 1
ox10-h

Ox18
0x20
Ox28
Ox30
Ox38
0x40
Ox48

x

B

=t

fit on one row

V

1
1
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

21

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes

= Each cell is a byte

B one \l/vord
= An aligned, 64-bit L &g \
Chunk Of data W|” Addless 0)(’00 0)('01 0)('02 0)(103 0)(’04 0)('05 0)('06 0x107
fit on one row oxoy ¥ ¥ ¥ PV iV ¥Y
OxO8¢] x i ni Ni NI NP KNI NI N
0x10? 0x08 0x09 OxOA O0xOB 0x0C 0xOP OxOF Ox{F
Ox18 | & &+ + & & i
0x20 I I I I I I I
Ox28 I I I I I I I
PR N N N S
N 0x38 N R R N N
Lok Ox40 | T
b&‘es \o\f‘e — 1 1 1 | 1 1
o ox48(_ 2 ¢+ ot i i i
\j\ 22

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

[64-bit example]
()

Addresses and Pointers

pointers are 64-bits wide

big-endian
+» An address refers to a location in memory

+» A pointeris a data object that holds an address

= Address can point to any data

« Value 504 stored at
Address
address 0x08 0x00 N A

504. . ='1F8 0x08 |00:00:00:00:00;00:01;F8
—ox00..0001Fg OO N [[[[
o 0x18 L

« Pointer stored at 0x20

) Ox28

Ox38 points to 0x30
address Ox08 0x38 [00 00:00!08

0x40

0x48

23

WA UNIVERSITY of WASHINGTON L02: Memory &

Data |

Addresses and Pointers

CSE351, Spring 2020

64-bit example

pointers are 64-bits wide

big-endian

+» An address refers to a location in memory

+» A pointeris a data object that holds an address

= Address can point to any data

« Pointer stored at

Ox48 points to S‘i"éeés
address 0x38 0x08

Ox10

00:00:00;00:00:00;01:F8

" Pointer to a pointer! ,13

+ |sthe data stored 0x20

Ox28

at Ox08 a pointer? 430

47 Could be, depending 0x38

0010000 08

: 0x40
on how you use it
+he har()wYt Moesnt know' %&

00:00:00: 38

24

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Data Representations

+ Sizes of data types (in bytes)
Java Data Type C Data Type 32-bit (old) x86-64

boolean bool 1
byte | char \ 1
char [\ 2
short short int \ 2
int int \ 4
float float \ 4
long int \ (4)
double double \ 8
fong flong long 8
long double 8
(reference) pointer * J G€>,

—

[address siz
To use “bool” in C, you must #1nclude <stdbool .h>

25

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Memory Alignment Revisited

+» A primitive object of K bytes must have an address
that is a multiple of K to be considered aligned
char
short

1

2

4 int, float

8 flong, double, pointers

+» For good memory system performance, Intel (x86)
recommends data be aligned

" However the x86-64 hardware will work correctly otherwise

« Design choice: x86-64 instructions are variable bytes long

26

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Byte Ordering

+» How should bytes within a word be ordered in
memory?

" Want to keep consecutive bytes in consecutive addresses

= Example: store the 4-byte (32-bit) Int:
Ox al b2 c3 d4

/V\O%+$ng) Ab Least g? %

B’{Tconventlon ordering of bytes called endianness

" The two options are big-endian and little-endian
« In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

27

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Byte Ordering

+ Big-endian (SPARC, z/Architecture)
" | east significant byte has highest address

ltle-endian (x86,x86-64)) | n+ Q
ast significant byte ha est address

+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+~ Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 0x101 Ox102 0x103

Big-Endian

0x100 0x101 Ox102 0x103

Little-Endian

28

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Byte Ordering

+ Big-endian (SPARC, z/Architecture)

= |east significant byte haslhighest|address
« Little-endian (x86, X86-64) s class

" | east significant byte has@address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little
LS hie

+ Example: 4-byte data Oxal azgﬂg\address 0x100

0x100 0x101 0x102 63(103
Big-Endian (| a1 | b2 | 3 | d4

0x100 O0x101 0x102 0x103
Little-Endian dd | c3 | b2 | a1

_&:v\"‘ revexse The hex AA\Q"*J .I

29

WA UNIVERSITY of WASHINGTON

LO2: Memory & Data |

CSE351, Spring 2020

Decimal: 12345
. Binary: 0011 0000 0011 1001
Byte Ordering Examples |, o O
L\ \o\ﬁe.s IA32, x86-64 SPARC
(little-endian) (big-endian)
InNt X = 12345; 0x00 00 | oxo0
// or X = 0x3039; 0x01 00 | Ox01
0x02 30 | 0x02
0x03 39 | 0x03
4 byte 32-b¥} machin
(% s o (bt machine 32°bit 64-bit 32-bit 64-bit
long Int y = 12345; IA32 x86-64 SPARC SPARC
// or y = 0Ox3039; O0x00|1 39 [~ 39 [O0x00 oxo0| 00 00 [0x00
0x01] 30 30 | 0x01 oxo1] OO 00 |0x01
0x02| 00 00 | 0x02 oxo02| 30 00 |0x02
0x031 00 l—| 00 | Ox03 0x03 39 00 |0x03
(A long Int s 5 00 | oxo4 00 |oxo4
. extra 00 | ox05 00 |0x05
the size of a word) 099 00 1 oxoc 20 ox06
00 | oxo7 39 |0x07

30

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Polling Question

00 00 0o g
+» We store the value OxX 01 02 03 04 as a word at
address 0x100 in a big-endian, géi—bj_r@chine

+» What is the byte ofmed at address 0x1047?
= \/ote at http://pollev.com/re%L

) \’\\00 OV}D \O \,.\0 L0¢\0% 7‘~\0 O*
A TR o | oz [o3[of ﬁ

E. We're lost...

31

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Endianness

4

Endianness only applies to memory storage
Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

" Compiler and assembler generate correct behavior (software)
Endianness still shows up:

" |ogical issues: accessing different amount of data than how
you stored it (e.g. store INt, access byte as a char)

" Need to know exact values to debug memory errors
" Manual translation to and from machine code (in 351)

32

WA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2020

Summary

+» Memory is a long, byte-addressed array
" Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

" Object of K bytes is aligned if it has an address that is a
multiple of K

+» Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

33

