
SID: ____________

7

Question F6: Structs [10 pts]

For this question, assume a 64-bit machine and the following C struct definition.

typedef struct {

 char* title; // title (e.g. "HW SW INTERFACE")

 char dept[3]; // dept (e.g. "CSE")

 short num; // course number (e.g. 351)

 int enrolled; // students enrolled

} course;

(A) How much memory, in bytes, does an instance of course use? How many of those bytes are
internal fragmentation and external fragmentation? [6 pt]

sizeof(course) Internal External

40 bytes 2 bytes 4 bytes

(B) Assume that an instance course c is allocated on the stack and an array char ar[] is
allocated 40 bytes below c (i.e. &ar + 0x28 == (char*)&c). Fill in the blanks below with
the new ASCII characters stored in c.dept after the following loop is executed. Hint: recall that
the values 0x30 to 0x39 correspond to the ASCII characters '0' to '9'. [4 pt]

for (int i = 0; i < 52; ++i) {

 ar[i] = i;

}

c.dept[0]: '___'

c.dept[1]: '___'

c.dept[2]: '___'

19au Final

 2 of 11

1. Caches (15 points total)

You are using a byte-addressed machine with 64 KiB of Physical address space. You have a 2-way

associative L1 data cache of total size 256 bytes with a cache block size of 16 bytes. It uses LRU

replacement and write-allocate and write-back policies.

a) [2 pt] Give the number of bits needed for each of these:

Cache Block Offset: ___________ Cache Tag: _____________

b) [1 pt] How many sets will the cache have? _____________

c) [4 pts] Assume i and j are stored in registers, and that the array x starts at address 0x0. Give the

miss rate (as a fraction or a %) for the following two loops, assuming that the cache starts out empty.

#define LEAP 2

#define SIZE 128

int x[SIZE];

... // Assume x has been initialized to contain values.

... // Assume the cache starts empty at this point.

for (int i = 0; i < SIZE; i += LEAP) { // Loop 1

 x[i] = x[i] + i * i;

}

for (int j = 1; j < SIZE; j += LEAP) { // Loop 2

 x[j] = x[j] + j * 2;

}

Miss Rate for Loop 1: ____________ Miss Rate for Loop 2: ____________

d) [8 pts] For each of the changes proposed below, indicate how it would affect the miss rate of each

loop above in part c) assuming that all other factors remained the same as they were in the original

problem. Circle one of: “increase”, “no change”, or “decrease” for each loop.

Change associativity from Loop 1: increase / no change / decrease

2-way to direct mapped: Loop 2: increase / no change / decrease

Change LEAP from Loop 1: increase / no change / decrease

2 to 4: Loop 2: increase / no change / decrease

Change cache size from Loop 1: increase / no change / decrease

256 bytes to 512 bytes: Loop 2: increase / no change / decrease

Change block size from Loop 1: increase / no change / decrease

16 bytes to 32 bytes: Loop 2: increase / no change / decrease

19sp Final

SID: ____________

9

Question F8: Processes [18 pts]

(A) The following function prints out four numbers. In the following blanks, list three possible

outcomes: [6 pt]

(1) _________________

(2) _________________

(3) _________________

(B) For each of the following types of synchronous exceptions, indicate whether they are intentional

(I) or unintentional (U) AND whether they are recoverable (R), maybe recoverable (M) or not

recoverable (N). [6 pt]
I/U R/M/N

Trap ______ ______

Fault ______ ______

Abort ______ ______

(C) For the following scenarios, circle the outcome when the child process executes exit(0). [6 pt]

Scenario: Outcome for child:

Parent is still executing. Alive Reaped Zombie

Parent has called wait(). Alive Reaped Zombie

Parent has terminated. Alive Reaped Zombie

void concurrent(void) {
 int x = 2, status;
 if (fork()) {

x *= 2;
 } else {

x -= 1;
 }
 if (fork()) {

x += 1;
wait(&status);

 } else {
x -= 2;

 }
 printf("%d",x);
 exit(0);
}

18au Final

UW NetID:

Question 7: Virtual Memory (30 total points)

(a) Virtual memory is an extremely powerful abstraction with many benefits. For each benefit listed
below, provide a brief (1-2 sentence) explanation of how VM accomplishes it.

i. (4 points) Protecting processes from one another.

ii. (4 points) Allow programs to use more memory than exists on the machine.

(b) Last month, I turned off my desktop computer, opened it up, added some more RAM (doubling it
from 16GiB to 32GiB), closed it, and turned it back on.

i. (4 points) Did the size of the virtual address space change? Why or why not?

ii. (4 points) Did the size of the physical address space change? Why or why not?

iii. (4 points) After the RAM upgrade, I was able to have more programs open (and thus using
memory) before performance began to degrade. Why did this happen? What was causing
performance to drop after a certain number of programs were running? (1-2 sentences)

15

Wi19 Final

UW NetID:

(c) Imagine the following system:

• 16-bit virtual addresses, 10-bit physical addresses.

• A page size of 16 bytes.

• 2-way set associative TLB with 8 total entries.

• All page table entries NOT in the initial TLB start as invalid.

i. (4 points) Compute the following quantities

Page offset bits:

VPN bits:

PPN bits:

TLB index bits:

ii. (6 points) The TLB has the following state:

Set Tag PPN Valid Tag PPN Valid
0 0x1B2 – 0 0x283 0x3A 1
1 0x2FB 0x29 1 0x0E8 0x1D 1
2 0x004 – 0 0x346 – 0
3 0x3F4 0x1B 1 0x257 0x36 1

Fill in the associated information for the following accesses to virtual addresses. (enter n/a if
the answer cannot be determined):

Virtual Address TLB Hit? Page Fault? PPN

0x3A17

0x0123

16

SID: ____________

11

Question F10: Memory Allocation [18 pts]

(A) In the following code, briefly identify the TWO memory issues and their fixes. [6 pt]

int N = 32;

long* func(long src[]) {
 long* p = (long*) malloc(N * sizeof(long));
 for (int i = 0; i < N; i++) {

p[i] += src[i];
 }
}

Error 1: Using uninitialized memory in p[i].

Fix 1: replace malloc with calloc or change p[i] += src[i]; to p[i] = src[i];

Error 2: memory leak – no way to access malloc’ed memory once func returns

Fix 2: add return p; at end of func

(B) We are using a dynamic memory allocator on a 64-bit machine with an explicit free list,
16-byte boundary tags, and 8-byte alignment. Assume that a footer is always used. [6 pt]

Request block addr return value block size

internal
fragmentation
in this block

p = malloc(9); 0x628 0x______ ______ bytes ______ bytes

(C) Consider the C code shown here. Assume that the malloc
call succeeds and that all variables are stored in memory
(not registers). In the following groups of expressions,
circle the one whose returned value (assume just before
return 0) is largest. [6 pt]

Group 1: &sp sp &str

Group 2: &glob main str

Group 3: glob ONE *str

End of Exam
Did you write your Student ID Number on the top-right corner of every odd page?

#include <stdlib.h>
long glob = 10;
char* str = "351";

int main() {
 short* sp = malloc(8);
 int ONE = 1;
 free(sp);
 return 0;
}

19au Final

	structs-19au.pdf
	caching-19sp.pdf
	processes-18au.pdf
	vm-19wi.pdf
	memalloc-19au.pdf

